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STATISTICAL INFERENCE:
A tutorial by Russell K. Schutt to accompany 
Investigating the Social World

Sometimes you're lucky, sometimes you're not.  Luck bestows its graces on lottery winners, on successful gamblers, on anyone who "gets lucky" when they benefit from a chance occurrence.  But lotteries continue to bring revenues into state coffers and Las Vegas continues to flourish from "losers'" profits.  Luck, the operation of strictly chance factors, works in predictable ways.  


Sampling theory tells us that the way to select a sample from a larger population in order to eliminate systematic sample bias is to select the sample on the basis of chance alone (Chapter 5 in Investigating the Social World).  Don't let anyone's characteristics influence whether they are selected for the sample--just leave it up to "chance."  Flip a coin.  Roll a die.  Select case numbers from a random number table.  Generate a list of random numbers with a computer.


But once we have selected a sample randomly, can we be sure that it really is representative of the population; that it looks just like the population (only smaller)?  That the value of a “sample statistic,” like, mean=5.7, is just the same as the value of the corresponding true “population parameter” (which might be a mean of 6.2)?  Of course not!  Just on the basis of chance alone, we might have selected an unrepresentative sample.  To resolve this paradox, we must turn to the predictable properties of chance factors.

The Normal Curve


One of the most predictable outcomes of the operation of chance factors is the normal curve.  Imagine an accomplished ball player, like former Red Sox slugger Manny Ramirez, who is as good a batter as he ever will be (for the sake of argument).  He has a batting average based on his performance over the course of countless games.  We’ll focus on the time he was playing for the Red Sox.  From the time he started playing in 1993 through the 2001 season, his batting average was .312.  In any given game, his performance may have been more or less than the average (on April 5, 2001, it was .200, while on April 24, 2001, it was .429; sometimes it was just about at the average value (on April 7, 2001, it was .333).  Sometimes his left arm was sore (we can imagine), sometimes his right eye was teary, sometimes the wind was blowing, sometimes the pitcher was exceptionally good.  All these things and many, many more influenced his performance on particular days.  So Manny had good and bad days.  Most of the days, he batted somewhere near his average, but occasionally his performance would be much better than this “central tendency” and occasionally much worse.  


If we plot the batter's performance over a long series of games, the plot will tend to be symmetric in shape, with equal proportions around the central value--it will tend to be centered on the mean, or arithmetic average (the batting average).  The plot will taper gradually off from the mean in both directions, with the slope of the plot line gradually decreasing, but not by too much--the line will never touch the bottom axis.  A predictable proportion of the area under the plot will be found at successive points along the plot.


The following histogram shows Manny’s batting average in about 25 games in June, 2001.  For just these games, his average doesn’t look too “normal” (the superimposed curve), but it does show quite a range of scores around the average for that month (.361), and, except for the 5 games with battering averages of about .381, the most common batting averages tended to be near the monthly average, or mean. 
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So, over the long haul, the batting average would tend to conform to the shape of the normal.


If we calculate the standard deviation of a large sample of batting statistics (so that the distribution is normal) and then mark the points on the plot corresponding to one, two and three standard deviations above and below the mean, we will find that 34% of the area under the curve falls one standard deviation (SD) above the mean (for a total of 68% from one standard deviation below to one standard deviation above the mean), that 47.5% of the area under the curve falls two standard deviations above the mean (for a total of 95% two SDs above and below the mean [the exact number is 1.96, not 2]).

Open the GSS2012z SPSS system (data) file.

Request the Frequencies of WORDSUM (the number of words respondents were able to define in a brief test).  Include in the request HIST (for a histogram), NORMAL (for a superimposed normal curve), and the several statistics indicated.  

ANALYZE ( DESCRIPTIVE STATISTICS ( FREQUENCIES (Select WORDSUM) ( CHARTS ( HISTOGRAMS (Show normal curve) ( CONTINUE ( STATISTICS (select mean, S.E. mean, Std. deviation, variance, and median) ( PERCENTILES (add 2.5, 32, 68, and 97.5) ( CONTINUE ( OK

How well does the distribution approximate a normal distribution?  How close Is the normal curve to the shape of the histogram?  How closely do the cut-points requested correspond to 1 and 2 standard deviation units above and below the mean (compare the values of the Mean +/- Std. Deviation (x2) to the values of the corresponding percentiles?

Z-scores


We can use the predictable shape of the normal distribution to convert measures based on different scales into units on a common metric.  We can convert scores from any distribution into what are called "z-scores" by subtracting the variable's mean from each score and then dividing the result for each case by the variable's standard deviation.  The resulting distribution of z-scores will then have a mean of zero and a standard deviation of one.


If the variable's values form a normal distribution, the z-scores also indicate how much of the distribution lies between them and the mean of the distribution.  Sixty-eight percent of the cases lie between a z-score of one and the mean and between a z-score of -1 and the mean.  Ninety-five percent of the distribution lies between a z-score of -2 and +2.  So, 5 percent of the cases lie further away from the mean than -2 and +2 standard deviation units (actually 1.96, not 2).  And fewer than one percent of the cases fall further away from the mean than -3 and +3 standard deviation units.  

Convert WORDSUM scores to Z-scores, calculate statistics, and compare.  

ANALYZE ( DESCRIPTIVE STATISTICS ( DESCRIPTIVES (select WORDSUM, then check “save standardized values as variables) ( OK

Then continue,

ANALYZE ( DESCRIPTIVE STATISTICS ( DESCRIPTIVES (select ZWORDSUM) ( OK
What is the mean of ZWORDSUM and its standard deviation?  That’s what happens when you transform a distribution of numeric values to z-scores.  

Now go back to the Data View and examine the first 20 or so cases for WORDSUM and ZWORDSUM to see how they compare.

Sampling Distributions

This still does not tell us how to estimate the representativeness of our random sample.  In order to do so, we have to turn our attention from the distribution of a sample to a sampling distribution--which is not quite the same thing.  


Imagine that we draw our random sample not just once, but twice, and compute the mean of each sample.  We then have a "sampling distribution" comprised of two sample means.  Let's repeat the process, umpteen times, and then a few more times; in fact, an infinite number of times.  We then have a true sampling distribution--that is, a distribution of sample statistics (means, in this case).  


So instead of plotting points representing individual cases, we plot points representing sample means.  And we end up with a graphic representation of the sampling distribution.  And guess what?  It will form a normal curve in most cases (in almost all cases, as long as the sample sizes are greater than 30).  The mean of the sampling distribution will be the true mean of the population that the samples were selected from.  
And what is the standard deviation of the sample distribution?  That's a little tougher to explain.  Every point in the sampling distribution represents the average of a number of cases (those in that particular sample).  So it's unlikely that any sample average will be very deviant (different from the population mean), in the way that the value of an individual case might be.  So what?  So, the standard deviation of the sampling distribution will be smaller than the standard deviations of the individual values (the population standard deviation).  The standard deviation of the sampling distribution (as estimated) is termed the "standard error."


Generate the mean occupational WORDSUM for 5 random samples.  We will pool results and plot the resulting sampling distribution. Select the following commands
DATA ( SELECT CASES ( RANDOM SAMPLE OF CASES ( SAMPLE ( EXACTLY (5 cases from the first 1974 cases) ( CONTINUE ( OK

ANALYZE ( DESCRIPTIVE STATISTICS ( DESCRIPTIVES (select WORDSUM) ( OK

NOW YOU MUST OPEN THE DATA(SELECT CASES WINDOW AND CLICK THE Reset BUTTON AT THE BOTTOM OF THE SELECT CASES WINDOW, THEN OK, BEFORE YOU CONTINUE.

Now repeat the Select Cases/Descriptive Statistics procedures 5 times, Record your results in a column, in order of increasing value of WORDSUM.  

Now repeat the previous steps, but increasing the sample size to 30. [SAMPLE 30 FROM 1974].  Record your results in a column, in order of increasing value of WORDSUM. 

Compare the range of scores in the two columns.  Any differences?  We’ll see how important these differences are in the next sections.
The Standard Error

When we must infer from a sample statistic to a population parameter, we really only have one sample on which to base our estimates about the population.  The standard error is calculated as the standard deviation of the sample divided by the square root of the number of cases in the sample.  And we estimate the mean of the population simply with the mean of the sample.


The formula for the standard error illustrates two important ramifications of sample characteristics for population inferences:  (1) The larger the number of cases in the sample, the smaller the standard error;   (2) The larger the sample standard deviation, the larger the standard error.


Stated another way, we can be more confident in estimates based on larger random samples, because we know that they are drawn from a "tighter" sampling distribution (one with a smaller standard error).  We can be more confident in estimates based on more homogeneous random samples (with a smaller standard deviation), because they, too, are selected from a "tighter" sampling distribution.

Confidence intervals and confidence limits

Now we can really start to get inferential.  Let us imagine that we have drawn one sample of 1000 employed adults in the United States and calculated their average (mean) income.  Suppose the sample mean is $60,000.  How confident can we be that our sample average is the same as the population average?


When the question is put that way, the answer is, not at all!  How likely is it that we would have hit the nail exactly on the head, so to speak, when we only have a sample of perhaps 1000 out of about 130 million employed adults (as of the 2000 Census)?  But we can determine how confident we can be in an estimate of the population average as being within some particular range.  


The "95% confidence limits" for the mean are calculated by multiplying the standard error by 1.96 (i.e., just about 2) and then adding and subtracting the result to the sample mean.  Let's say the standard error times 1.96 equals 1000, and we then add and subtract this number to the sample mean of 60,000.  We can then say that we are 95% confident that the population mean lies between 59000 and 61000. 


The 1.96 corresponds to the standard points on the normal curve, in this case the normal curve corresponding to the sampling distribution we believe we have sampled from.  We could also calculate the "99% confidence limits" by adding and subtracting 2.58 times the standard error to our sample mean.  Or we could calculate any other confidence limits.


Of course, the more confident our estimate (99% vs. 95%), the less precise our estimate (the 99% confidence interval is wider than the 95% confidence interval).  And the greater the number of cases in our sample, the more precise our estimate can be at a given level of confidence (the standard error, and hence the size of the confidence interval, will be smaller).


Calculate the 95% and 99% confidence intervals for the mean WORDSUM in the total sample (see first output requested, above).  Check yourself by using SPSS to calculate the confidence intervals, as follows:
For the 95% confidence limits,
ANALYZE ( DESCRIPTIVE STATISTICS ( EXPLORE (add WORDSUM to the dependent list. Under “Display” click statistics) ( STATISTICS (make sure it says 95% confidence interval) ( CONTINUE ( OK
For the 99% confidence limits,
ANALYZE ( DESCRIPTIVE STATISTICS ( EXPLORE (add WORDSUM to the dependent list. Under “Display” click statistics) ( STATISTICS (change it to 99% confidence interval) ( CONTINUE ( OK

State your confidence in the obtained confidence interval estimates.

Hypothesis testing

Confidence intervals underlie hypothesis testing.  When we test an hypothesis in statistics, we do so an in indirect way, by seeing whether we can reject the reverse of what we really "want" to find; if so, than our original hypothesis is supported.


The "null hypothesis" is the reverse of what we "want" to find.  For example, we may think the mean of a population is not equal to five, although we do not know by how much it differs from five.  So we see if we can reject the null hypothesis that it is equal to five.  The "research hypothesis" is what we really "want" to "prove."  (The population mean is not 5.)


Let us say that we want to be 95% confident that we will not reject the null hypothesis unless it is false.  We then calculate the 95% confidence limits around our sample mean and see if they include the value of 5 (the null hypothesis).  If they do not, we can reject the null hypothesis at the 95% level of confidence:  it is likely only 5 times in every 100 (for 5 random samples out of 100) that we would have obtained a sample mean so different from five if five actually were the population mean.  But is our one sample one of those 5?  We don't know.  We just know the odds.


It is conventional to reject null hypotheses only if we can be at least 95% confident that in doing so, we will not be failing to accept a correct null hypothesis.  But researchers who wish to be more confident before rejecting their null hypotheses will use the 99% or 99.9% level of confidence (corresponding, respectively, to the .05, .01 and .001 "level of significance").

If our null hypothesis is really true and we do not reject it, we are correct. 

If our null hypothesis is really false and we reject it, we are correct.

If our null hypothesis is really true and we reject it, we are wrong.  This is termed a "Type I Error."  The likelihood of making such an error is determined by the significance level.  

If our null hypothesis is really false and we fail to reject it, we are wrong.  This is termed a "Type II Error."  Obviously, the less the likelihood of a Type I error, or the higher the alpha level, the greater the likelihood of a Type II error.  (The less the odds of rejecting a true null hypothesis, the greater the odds of accepting a false null H.)  Unfortunately, the odds of Type I and Type II errors do not vary as a simple function of each other, and it is quite a bit harder to determine the odds of making a Type II error.  Usually, this possibility is ignored.

           RESEARCH DECISION

	NULL H
	False
	True

	False
	CORRECT
	TYPE II ERROR

	True
	TYPE I ERROR
	CORRECT



An hypothesis test can be either 1- or 2-tailed.  In a 2-tailed test, our substantive (research) hypothesis is that the population mean (for example) is different from 5.  In a 1-tailed test, our substantive (research) hypothesis is that the population mean is greater than 5 (or less than 5, but not both).  

T-Test


If we can estimate the likelihood that one population mean (or other statistic) lies within a certain range, why not do so for two means?  The t-test determines the statistical significance of the difference between two means drawn from separate samples; it tests the null hypothesis that the two samples were selected from the same population.


More formally, Ho is: the mean of the first population minus the mean of the second population is equal to zero.  Ha [the research or alternative or substantive hypothesis] is: the mean of the first population minus the mean of the second population is not equal to zero (for a two-tailed test).


See the text for the formula to calculate the value of t.  The calculation varies depending on whether the variance of the two samples differs significantly or not.  When your research or alternative hypothesis is directional (a 1-tailed significance level is needed), just divide the 2-tailed significance level by 2.


In order to use the value of t, you must be able assume that the two samples were independent random samples drawn from normally distributed populations (unless the N is large--if so, the normality distribution is not needed).  If the sample ns are very small (LT 30), the degrees of freedom must be taken into account.  See the values of t in the table at the back of any statistics text.


Conduct a T-Test of the difference in WORDSUM between men and women, using a 2-tailed test.  Interpret the results.  Re-express the results as if from a 1-tailed test.  Which is more appropriate (1- or 2-tailed)?

ANALYZE ( COMPARE MEANS ( INDEPENDENT-SAMPLES T TEST (Select WORDSUM for the test variable, and SEX for the grouping variable ( DEFINE GROUPS (Group 1 = 1, Group 2 = 2) ( CONTINUE ( OK

Discuss your findings?  Can you reject the null hypothesis of “no difference” at the 95% significance level using a 1-tailed test?
