... Master List of Formulas

Chapter 1 Introduction and Descriptive Statistics

NONE.

Chapter 2 Frequency Distributions
 in Tables and Graphs

Ex (Frequency)
$\frac{\Sigma x}{n}$ (Relative frequency)
$\frac{\Sigma x}{n} \times 100$ (Relative percent)

Chapter 3 Summarizing Data: Center Tendency

$\mu=\frac{\Sigma x}{N}$ (Population mean)
$M=\frac{\Sigma X}{n}$ (Sample mean)
$M_{w}=\frac{\Sigma(M \times n)}{\Sigma n}$ (Weighted sample mean)

Chapter 4 Summarizing Data: Variability

$R=L-S$ (Range)
$\operatorname{IQR}=Q_{3}-Q_{1}$ (Interquartile range)
$S I Q R=\frac{\operatorname{IQR}}{2}$ (Semi-interquartile range)
$S S=\Sigma(x-\mu)^{2}$ (Definitional formula for the sum of squares in a population)
$S S=\Sigma x^{2}-\Sigma \frac{(\Sigma x)^{2}}{N}$ (Computational formula for the sum of squares in a
population)
$\sigma^{2}=\frac{S S}{N}$ (Population variance)
$\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{S S}{N}}$ (Population standard deviation)
$S S=\Sigma(x-M)^{2}$ (Definitional formula for sum of squares in a sample)
$S S=\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}$ (Computational formula for sum of squares in a sample)
$d f=n-1$ (Degrees of freedom for sample variance)
$s^{2}=\frac{S S}{n-1}=\frac{S S}{d f}$ (Sample variance)
$S D=\sqrt{s^{2}}=\sqrt{\frac{S S}{n-1}}=\sqrt{\frac{S S}{d f}}$ (Sample standard deviation)

Chapter 5 Probability

$p(x)=\frac{f(x)}{\text { sample space }}$ (Simple probability)
$p(U / P)=\frac{p(P / U) p(U)}{p(P)}$ (Bayes's theorem)
$\mu=\Sigma(x p)$ (Mean of a probability distribution)
$\sigma^{2}=\Sigma\left((x-\mu)^{2} p\right)$ (Variance of a probability distribution)
$\sigma=\sqrt{\sigma^{2}}=\sqrt{\Sigma\left((x-\mu)^{2} p\right)}$ (Standard deviation of a probability distribution)
$\sigma=\sqrt{\sigma^{2}}=\sqrt{\left(\Sigma\left(x^{2} p\right)-\mu^{2}\right)}$ (Computing formula for variance of a probability distribution)
$\sigma=\sqrt{\left(\Sigma\left(x^{2} p\right)-\mu^{2}\right)}$ (Computing formula for standard deviation of a probability distribution)
$\mu=n p$ (Mean of a binomial probability distribution)
$\sigma^{2}=n p(1-p)=n p q$ (Variance of a binomial probability distribution)
$\sigma=\sqrt{n p(1-p)}=\sqrt{n p q}$ (Standard deviation of a binomial probability distribution)

Chapter 6 Probability, Normal Distributions, and z Scores

$z=\frac{x-\mu}{\sigma}(z$ transformation for a population of scores)
$z=\frac{x-M}{S D}$ (z transformation for a sample of scores)

Chapter 7 Probability and Sampling Distributions

$z=\frac{x-\mu}{\sigma}$ (z transformation for a population of scores)
$z=\frac{x-M}{S D}(z$ transformation for a sample of scores)
$z=\frac{M-\mu}{\sigma_{M}}(z$ transformation for a distribution of sample means)
$\sigma_{M}=\sqrt{\frac{\sigma^{2}}{n}}=\frac{\sigma}{\sqrt{n}}$ (Standard error of the mean)

Chapter 8 Hypothesis Testing:

Significance, Effect Size, and Power
$z_{\text {obt }}=\frac{M-\mu}{\sigma_{M}}$ (Test statistic for the one-sample z test)
$d=\frac{M-\mu}{\sigma}$ (Cohen's d effect size measure for the one-sample z test)

Chapter 9 Testing Means: One-Sample and Two-Independent-Sample \boldsymbol{t} Tests

One-Sample t

$t_{o b t}=\frac{M-\mu}{s_{M}}$ (Test statistic for the one-sample t test)
$s_{M}=\sqrt{\frac{s^{2}}{n}}$ (Estimated standard error)
$d t=n-1$ (Degrees of freedom for the one-sample t test)

Two-Independent-Sample t

$t_{\text {obt }}=\frac{\left(M_{1}-M_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{s_{M_{1}-M_{2}}}$ (Test statistic for the two-independent-sample t test)
$s_{M_{1}-M_{2}}=\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}$ (Estimated standard error for the difference)
$s_{p}^{2}=\frac{s_{1}^{2}\left(d f_{1}\right)+s_{2}^{2}\left(d f_{2}\right)}{d f_{1}+d f_{2}}$ (Pooled sample variance for unequal sample sizes)
$d f=\left(n_{1}-1\right)+\left(n_{2}-1\right)$ (Degrees of freedom for the two-independent-sample t test)

Effect Size

$d=\frac{M-\mu}{S D}$ (Estimated Cohen's d for the one-sample t test)
$\frac{M_{1}-M_{2}}{\sqrt{s_{p}^{2}}}$ (Estimated Cohen's d for the two-independent-sample t test) $\eta^{2}=\frac{t^{2}}{t^{2}+d f}$ (Eta-squared estimate of proportion of variance; used for all t tests)
$\omega^{2}=\frac{t^{2}-1}{t^{2}+d f}$ (Omega-squared estimate of proportion of variance; used for all t tests)

Chapter 10 Testing Means:
 The Related-Samples t Test

Related-Samples t

$t_{o b t}=\frac{M_{D}-\mu_{D}}{s_{M D}}$ (Test statistic for the related-samples t test)
$s_{M D}=\sqrt{\frac{s_{D}^{2}}{n_{D}}}=\frac{s_{D}}{\sqrt{n_{D}}}$ (Estimated standard error for difference scores)
$d f=n_{D}-1$ (Degrees of freedom for related-samples t test)

Effect Size

$d=\frac{M_{D}}{s_{D}}$ (Estimated Cohen's d for related-samples t test)
$\eta^{2}=\frac{t^{2}}{t^{2}+d f}$ (Eta-squared estimate of proportion of variance; used for all t tests)
$\omega^{2}=\frac{t^{2}-1}{t^{2}+d f}$ (Omega-squared estimate of proportion of variance; used for all t tests)

Chapter 11 Estimation and Confidence Intervals

$M \pm z\left(\sigma_{M}\right)$ (The estimation formula for a one-sample z test)
$M \pm t\left(s_{M}\right)$ (The estimation formula for a one-sample t test)
$M_{1}-M_{2} \pm t\left(s_{M_{1}-M_{2}}\right)$ (The estimation formula for a two-independent-sample t test)
$M_{D} \pm t\left(s_{M D}\right)$ (The estimation formula for a related-samples t test)

Chapter 12 Analysis of Variance: One-Way Between-Subjects Design Table for One-Way Between-Subjects ANOVA

Source of Variation	SS	df	MS	$\boldsymbol{F}_{\text {obt }}$
Between groups		$k-1$	$\frac{S S_{B G}}{d f_{B G}}$	$\frac{M S_{B G}}{M S_{E}}$
Within groups (error)		$N-k$	$\frac{S S_{E}}{d f_{E}}$	
Total		$N-1$		

Between-Subjects Design

$F_{\text {obt }}=\frac{M S_{B G}}{M S_{E}}$ (Test statistic for the one-way between-subjects ANOVA)
$M S=\frac{S S}{d f}$ (Mean square for each source of variation; used for all ANOVA tests)
$d f_{B G}=k-1$ (Degrees of freedom between groups)
$d f_{E}=N-k$ (Degrees of freedom error)
$d f_{T}=N-1$ (Degrees of freedom total)

Effect Size (Between-Subjects Design)

$R^{2}=\eta^{2}=\frac{S S_{B G}}{S S_{T}}$ (Eta-squared estimate for proportion of variance)
$\omega^{2}=\frac{S S_{B G}-d E_{B G}\left(M S_{E}\right)}{S S_{T}+M S_{E}}$ (Omega-squared estimate for proportion of variance)

Post Hoc Tests

$t_{\alpha} \sqrt{M S_{E}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$ (Fisher's LSD formula)
$q_{\alpha} \sqrt{\frac{M S_{E}}{n}}$ (Tukey's HSD formula)

Chapter 13 Analysis of Variance: One-Way Within-Subjects (Repeated-Measures) Design
 Table for One-Way Within-Subjects (Repeated-Measures) ANOVA

Source of Variation	SS	df	MS	$\boldsymbol{F}_{\text {obt }}$
Between groups	$k-1$	$\frac{S S_{B G}}{d f_{B G}}$	$\frac{M S_{B G}}{M S_{E}}$	
Between persons	$n-1$	$\frac{S S_{B P}}{d f_{B P}}$		
Within groups (error)	$(k-1)(n-1)$	$\frac{S S_{E}}{d f_{E}}$		
Total	$(k n-1)$			

Within-Subjects Design

$F_{\text {obt }}=\frac{M S_{B G}}{M S_{E}}$ (Test statistic for the one-way within-subjects ANOVA)
$d f_{B G}=k-1$ (Degrees of freedom between groups)
$d f_{B P}=n-1$ (Degrees of freedom between persons)
$d f_{E}=(k-1)(n-1)($ Degrees of freedom error)
$d f_{T}=(k n)-1$ (Degrees of freedom total)

Effect Size (Within-Subjects Design)

$\eta_{P}^{2}=\frac{S S_{B G}}{S S_{T}-S S_{B P}}$ (Partial eta-squared)
$\omega_{P}^{2}=\frac{S S_{B G}-d f_{B G}\left(M S_{E}\right)}{\left(S S_{T}-S S_{B P}\right)+M S_{E}}$ (Partial omega-squared)

Chapter 14 Analysis of Variance: Two-Way Between-Subjects Factorial Design
 ANOVA Table for Two-Way
 Between-Subjects Factorial Design

Source of Variation	$\mathbf{S S}$	$\boldsymbol{d f}$	$\boldsymbol{M S}$	\boldsymbol{F}
Factor A	$p-1$	$\frac{S S_{A}}{d f_{A}}$	$F_{A}=\frac{M S_{A}}{M S_{E}}$	
Factor B	$q-1$	$\frac{S S_{B}}{d f_{B}}$	$F_{B}=\frac{M S_{B}}{M S_{E}}$	
$\mathbf{A} \times \mathbf{B}$	$(p-1)(q-1)$	$\frac{S S_{A \times B}}{d f_{A \times B}}$	$F_{A \times B}=\frac{M S_{A \times B}}{M S_{E}}$	
Error (within groups)	$p q(n-1)$	$\frac{S S_{E}}{d f_{E}}$		
Total	$n p q-1$			

Between-Subjects Design

$F_{A}=\frac{M S_{A}}{M S_{E}}$ (Test statistic for the main effect of Factor A)
$F_{B}=\frac{M S_{B}}{M S_{E}}$ (Test statistic for the main effect of Factor B)
$F_{A \times B}=\frac{M S_{A \times B}}{M S_{E}}$ (Test statistic for the $A \times B$ interaction)
$d f_{A}=p-1($ Degrees of freedom for Factor A)
$d f_{B}=q-1$ (Degrees of freedom for Factor B)
$d f_{A \times B}=(p-1)(q-1)$ (Degrees of freedom for the $A \times B$ interaction)
$d f_{E}=p q(n-1)$ (Degrees of freedom error)
$d f_{T}=n p q-1$ (Degrees of freedom total)

Effect Size (Two-Way Between-Subjects ANOVA)

$\eta_{A}^{2}=\frac{S S_{A}}{S S_{T}}, \eta_{B}^{2}=\frac{S S_{B}}{S S_{T}}$ (Eta-squared for main effects)
$\eta_{A \times B}^{2}=\frac{S S_{A \times B}}{S S_{T}}$ (Eta-squared for the interaction)
$\omega_{A}^{2}=\frac{S S_{A}-d f_{A}\left(M S_{E}\right)}{S S_{T}+M S_{E}}, \omega_{B}^{2}=\frac{S S_{B}-d f_{B}\left(M S_{E}\right)}{S S_{T}+M S_{E}}$ (Omega-squared for main effects)
$\omega_{A \times B}^{2}=\frac{S S_{A \times B}-d f_{A \times B}\left(M S_{E}\right)}{S S_{T}+M S_{E}}$ (Omega-squared for the interaction)

Chapter 15 Correlation

Correlation Coefficients

$r=\frac{S S_{X Y}}{\sqrt{S S_{X} S S_{Y}}}$ (Pearson correlation coefficient)
$r_{s}=1-\frac{6 \Sigma D^{2}}{n\left(n^{2}-1\right)}$ (Spearman rank-order correlation coefficient)
$r_{p b}=\left(\frac{M_{Y_{1}}-M_{Y_{2}}}{s_{Y}}\right)(\sqrt{p q})$ (Point-biserial correlation coefficient)
$r_{\phi}=\frac{a d-b c}{\sqrt{A B C D}}$ (Phi correlation coefficient)

Converting the Correlation Coefficient (r) to t and χ^{2}

$t^{2}=\frac{r^{2}}{\left(1-r^{2}\right) / d f}$ (Formula for converting r to $\left.t\right)$
$\chi^{2}=r_{\phi}^{2} n$ (Formula for converting r to χ^{2})

Effect Size

$r^{2}=\eta^{2}$ (The coefficient of determination)

Chapter 16 Linear Regression and Multiple Regression
 Method of Least Squares

$$
\begin{aligned}
& Y=b X+a \text { (Linear equation for a straight line) } \\
& b=\frac{S S_{X Y}}{S S_{X}} \text { (Slope of a straight line) } \\
& a=M_{Y}-b M_{X} \text { (y-intercept for a straight line) }
\end{aligned}
$$

Analysis of Regression

$F_{\text {obt }}=\frac{M S_{\text {regression }}}{M S_{\text {residual }}}$ (Test statistic for analysis of regression and multiple regression)
$d f_{\text {regression }}=1$ (Degrees of freedom regression with one predictor variable)
$d f_{\text {residual }}=n-2$ (Degrees of freedom residual)
$s_{e}=\sqrt{M S_{\text {residual }}}$ (Standard error of estimate)

Chapter 17 Nonparametric

 Tests: Chi-Square Tests
Chi-Square Tests

$\chi_{o b t}^{2}=\Sigma \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}$ (Test statistic for the chi-square goodness-of-fit test and the chi-square test for independence)
$d f=k-1$ (Degrees of freedom for the chi-square goodness-of-fit test)
$d f=\left(k_{1}-1\right)\left(k_{2}-1\right)($ Degrees of freedom for the chi-square test for independence)

Effect Size (Chi-Square Test for Independence)

$\phi^{2}=\frac{\chi^{2}}{n}$ (Effect size using the proportion of variance)
$\phi=\sqrt{\frac{\chi^{2}}{n}}$ (Effect size using the phi coefficient)
$V=\sqrt{\frac{\chi^{2}}{n \times d f_{\text {smaller }}}}$ (Effect size using Cramer's V)

Chapter 18 Nonparametric Tests: Tests for Ordinal Data

The Sign Test

$z=\frac{x-n p}{\sqrt{n p(1-p)}}$ (Test statistic for the normal approximation of the sign test)

Wilcoxon Signed-Ranks TTest

$z=\frac{T-\mu_{T}}{\sigma_{T}}$ (Test statistic for the normal approximation of the Wilcoxon T)
$\mu_{T}=\frac{n(n+1)}{4}$ (The mean for the test statistic T)
$\sigma_{T}=\sqrt{\frac{n(n+1)(2 n+1)}{24}}$ (The standard deviation for the test statistic T)

Mann-Whitney UTest

$z=\frac{U-\mu_{U}}{\sigma_{U}}$ (Test statistic for the normal approximation of the Mann-Whitney U)
$\mu_{U}=\frac{n_{A} n_{B}}{2}$ (The mean for the test statistic U)
$\sigma_{U}=\sqrt{\frac{n_{A} n_{B}\left(n_{A}+n_{B}+1\right)}{12}}$ (The standard deviation for the test statistic U)

The Kruskal-Wallis H Test

$H=\frac{12}{N(N+1)}\left(\Sigma \frac{R^{2}}{n}\right)-3(N+1)$ (Test statistic for the Kruskal-Wallis H test)

The Friedman Test

$\chi_{R}^{2}=\frac{12}{n k(k+1)} \Sigma R^{2}-3 n(k+1)$ (Test statistic for the Friedman test)

