Regression Tutorial                                                                    Page 10

CORRELATION AND REGRESSION ANALYSIS, ANALYSIS OF VARIANCE

A tutorial by Russell K. Schutt to accompany 
Investigating the Social World

Crosstabulation is a simple, straightforward tool for examining relationships between variables, but it has two important disadvantages.  First, quantitative variables with many values must be recoded to a smaller number of categories before they can be crosstabbed with other variables.  This necessarily loses information about the covariation of the variables.  Second, crosstabulation limits severely the number of variables whose relationships can be examined simultaneously.  While we may be able to control for one variable while evaluating the association between two others, our theories or prior research findings often require that we take into account the simultaneous influences of a number of variables.  Unless we have an exceptionally large number of cases, a traditional crosstabular control strategy will result in many subtables, most of which are likely to have very few cases.

BIVARIATE REGRESSION ANALYSIS

The Linear Model


Regression analysis overcomes both of these problems of crosstabular analysis, although like any statistic the regression approach has its own limitations.  Regression analysis builds on the equation that describes a straight line.  This equation has two parameters (a, b) and two variables (X, Y), related to each other in the simple equation:  Y = a + bX.  In figure 1, mark and label “tick marks on the X and Y axes, then plot the points listed in table 1.  Draw a straight line that connects all the points.  You can see that the linear equation Y = 10 + 2X describes perfectly the association between the two variables, Y (hourly wage) and X (seniority), in an imaginary factory.  We might call it a prediction equation, since we can use it to predict what wage a case will have based on its seniority.

Table 1



Wages (Y)

Seniority (X)
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         10
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         20

Figure 1

A Linear Relationship

Hourly Wage by Seniority
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Y is the dependent variable (hourly wage, in this case), X is the independent variable (seniority).  The parameter "a" is termed the "Y-intercept"; while the parameter "b" is termed the "slope coefficient."  Note that the line intersects the Y-axis (where X = 0) at the value of a (10), while the slope of the line is such that for every 1-unit change in X, there is a 2-unit change in Y (so, b=2/1, or 2).


Of course, relationships between variables in the real social world are never as simple as a perfectly straight line (though I suppose I should never say "never").  There will always be some cases that deviate from the line.  In fact, it may very well be that none of the cases fall exactly on the line.  And then again, a straight line may not describe the relationship between X and Y very well at all.  There may not even BE a relationship between X and Y.


We will use SPSS examples involving the prediction of family income.  We will use for this purpose a variable in GSS2012z, INCOMEFAM06, in which the categorical values of INCOME06 have been recoded to dollar amounts that represent the midpoints of the original categories.  This will make it more appropriate to treat the income variable as an integer-level variable.  

Now, examine the plots produced by the following menu commands:  

DATA ( SELECT CASES ( RANDOM SAMPLE OF CASES ( SAMPLE (10% of all cases) ( CONTINUE ( FILTER OUT UNSELECTED CASES ( OK

By convention, the dependent variable is plotted against the Y-axis and the independent variable is plotted against the X-axis.  

GRAPHS ( LEGACY DIALOGS ( SCATTER/DOT ( SIMPLE SCATTER ( DEFINE

Y AXIS: INCOMEFAM06
X AXIS: EDUC

Do you see a trend in the data?  Does family income seem to vary with education?  In what way?  Can you draw a line that captures this trend?  Can you draw a STRAIGHT line that captures this trend?  Please do so.

Repeat this procedure, replacing EDUC with AGE.  Again, do you see any trend?  Does income seem to vary at all with age? In what way?  Can you draw a line that captures this trend?  Can you draw a STRAIGHT line that captures this trend?  Please try.

Note that these examples use a small subset of cases so that it is easier to see the relationship (even though it represents only a fraction of the cases). Make sure to go back and select “all cases” after you have produced these scatter plots: DATA(SELECT CASES(ALL CASES.
Identifying the Best-Fitting Regression Line


Bivariate regression analysis fits a straight line to the relationship between an independent variable and a dependent variable; you then generate statistics that describe the goodness of fit of that line.  But how should the straight line be drawn through a plot of data, such as those just produced?  Ordinary least squares (OLS) regression analysis, the kind of regression analysis we are studying, shows us where to draw the line so that it minimizes the magnitude of the squared deviations of the Y values from the line:  
[image: image1.wmf](

)

2

å

-

Y

Y

.  That is, OLS makes the vertical distance from each point to the regression line, squared, as small as possible.  This criterion should remind you of the formula for the variance, which was the average of squared deviations of each case from the mean of the distribution. [Please note: this symbol, 
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, stands for the mean of Y.  Same for (.]


Go back to figure 1 and add the additional points indicated by the combinations of X and Y values in table 2 (below).  Draw a vertical line from each point to the regression line.  This indicates for several cases their deviation from the regression line.  This deviation is termed the “residual.”  Regression analysis calculates the parameters (a and b) for a straight line that minimizes the size of the squared residuals.  The value of b is calculated with the following formula:  

b = 
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This can also be represented as (xy/(x2, where x and y represent deviations from the means of X and Y, respectively.  The value of a, the Y intercept, is calculated simply as:

a = 
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These calculations can be made in table 2.


Now, the linear equation shows how Y can be predicted from values of X, but it does not result in exactly the values of Y, since there is some error.  We represent the prediction of Y with some error by changing Y in the linear equation to 
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(“Y-hat”).  And we can use the following equation to represent how actual values of Y are related to the linear equation:  
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= a + bX + e,

where e is an error term, or the residual, representing the deviation of each actual Y value from the straight line. 





Table 2

Calculating the Parameters of a Bivariate Regression Line*
	Y (IV)
	X (DV)
	
[image: image8.wmf](

)

X

X

-


	
[image: image9.wmf](

)

Y

Y

-


	
[image: image10.wmf](

)

(

)

X

X

Y

Y

-

-


	
[image: image11.wmf](

)

2

X

X

-



	10


	0
	-9.89
	-15.67
	154.98
	97.81

	11
	2
	
	
	
	

	14
	3
	
	
	
	

	14
	6
	
	
	
	

	20
	2
	
	
	
	

	30
	15
	
	
	
	

	32
	12
	
	
	
	

	50
	27
	
	
	
	

	50
	22
	
	
	
	

	(
	
	-------
	------
	
	



[image: image12.wmf]Y

= 25.67
     
[image: image13.wmf]X

= 9.89

*For you to finish.


Now we can draw the “best-fitting” regression line--that is, the line that minimizes the sum of squared errors.  Draw the line in figure 1 by placing a point on the Y-intercept and another based on some other value of X and the corresponding predicted value of Y.  Write the prediction equation above the line (the dependent variable is now indicated by 
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, since the values of 
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in the equation are only predicted values, not necessarily the actual ones).  


For an SPSS example, continue with the INC0MEFAM06 by EDUC example you used previously.  Calculate the parameters for the regression line: 

ANALYZE(REGRESSION(LINEAR(DEPENDENT=INCOMEFAM06(INDEPENDENT=EDUC(OK.
Now draw the regression line, using the Y-intercept (the “constant”) and the slope (B) to calculate another Y-value on the line and connecting them.  How well does the line seem to fit?

Evaluating the Fit of the Line

How can we make a more precise statement about the line’s fit to the data?  We answer this question with a statistic called “r squared”:  r2.  R2 is a proportionate-reduction-in-error (PRE) measure of association (see the crosstabs tutorial for a reminder about PRE measures; gamma was a PRE measure of association for crosstabs).  As with other PRE measures, it is based on a comparison between the amount by which we reduce errors in predicting the value of cases on the dependent variable when we take into account their value on the independent variable, compared to the total amount of error (or variation) in the dependent variable.  As with other PRE measures, it varies from 0 [no linear association] to 1 [perfect linear association].

If we do not know about the value of cases on the independent variable, the best we can do in predicting the value of cases on the dependent variable is to predict the value of the mean for each case.  The total amount of error variation in Y is then simply: 
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.  This is the “total variation” in Y.  The error that is left after we use the regression line to predict the value of Y for each case is 
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Using the basic PRE equation, r2 is thus:

r2 = (E1-E2)/E1 = 
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Specifically, r2 is the proportion of variance in Y that is explained by its linear association with X.  The sum of the squared residuals is then the “unexplained” variance.  So, the total variation in Y can be decomposed into two components:  explained and unexplained variation.
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Total Variation= Explained Variation+ Unexplained Variation.

In these terms, r2 = Explained Variation / Total Variation.

Does family income seem to vary with years of education?  Examine the value of r2 (from the regression of income on education).  What proportion of variance in family income does years of education (EDUC) explain?  Note that the regression and residual sum of squares correspond to the explained and unexplained variation (see the discussion above).  Is the “effect” of EDUC statistically significant at the .05 level?  At the .001 level? (examine the Sig T under the heading, “coefficients”).  Note that in a bivariate regression, the overall F test for the significance of the effect of the independent variables will lead to the same result as the significance test for the value of b.


The Pearsonian correlation coefficient, r, is a commonly used measure of association for two quantitative variables.  It is, of course, simply “r-squared unsquared”—that is, the square root of r2.  But note that r is a directional measure (it can be either positive or negative), and the sign cannot be determined based on taking the square root of r.  The value of r can be calculated directly with the formula:

r = 
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That is, r is the average covariation of X and Y in standardized form.  In a bivariate regression, r and b are directly related to each other:  r is simply b after adjustment for the ratio of the standard deviations of X and Y.  Its values can range from -1 to 0 [no association] to +1.

r = b (Sx/Sy)

In the bivariate case, r is the “standardized slope coefficient,” or beta.  This is the slope of Y regressed on X after both X and Y are expressed in standardized form (as x and y - that is, X-
[image: image22.wmf]X

 and Y-
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).  

Examine the value of beta in the regression of income on education.  What is the direction of the association?  (Do you know how the variables were coded?)  Look ahead at the matrix of correlation coefficients.  Is the value of r for INCOMEFAM06 by EDUC the same as the value of the beta you just checked?  Am I right or what?

Values of r for sets of variables are often presented in a “correlation matrix.”  Inspect the matrix produced by the following command.

ANALYZE(CORRELATE(BIVARIATE(INCOMEFAM06 EDUC AGE.

What does this set of correlations indicate about the relations among family income, education, and age?  


To complete the picture, the standard error of b is:
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, where 
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As usual, the standard error is needed in order to permit us to estimate the confidence limits around the value of b—that is, for the purposes of statistical inference.  What are the 95% confidence limits around the value of b in the regression of INCOMEFAM06 on EDUC?

Assumptions & Cautions


Regression analysis makes several assumptions about properties of the data.  When these assumptions are not met, the regression statistics can be misleading.  Several other cautions also must be noted.

(1) Linearity.  Regression analysis assumes that the association between the two variables is best approximated with a straight line.  If the best-fitting line actually would be curvilinear, the equation for a straight line will mischaracterize the relationship, and could even miss it altogether.  One way to diagnose this problem is to inspect the scatterplot.

It is possible to get around this problem.  Just find an arithmetic transformation of one or both variables that “straightens” the line.  For example, squaring the X variable can straighten a regression line that otherwise would curve upward. 


(2) Homoscedasticity.  The calculation of r2 assumes that the amount of variation around the line is the same along its entire length.  If there is much more variability at one end of the line than at the other end, for example, the line will “fit” the points much better at the other end.  Yet r2 simply averages the fit along the entire line.  One way to diagnose this problem is to inspect the scatterplot.  Another way is to split the cases on the basis of their value on X and then calculate separate values of r2 for the two halves of the data.  If the values of r2 differ greatly for the two halves, homoscedasticity is a likely culprit (if curvilinearitiy can be ruled out as an explanation).


(4) Uncorrelated error terms.  This is a potential problem in a time series analysis, when the independent variable is time.  This is often an issue in econometrics, but rarely in sociology.


(5) Normal distribution of Y for each value of X.  If the variance around each line segment is not approximately normal, the test of significance for the regression parameters will be misleading.  However, this does not invalidate the parameter estimates themselves.


(6) There are no outliers.  If a few cases lie unusually far from the regression line, they will exert a disproportionate influence on the equation for the line.  Just as the mean is pulled in the direction of a skew, so regression parameters will be pulled in the direction of outliers, even though this makes the parameters less representative of the data as a whole.  Inspection of the scatterplot should identify outliers.  


(7)  Predictions are not based on extrapolating beyond the range of observed data.  Predictions of Y values based on X values that are well beyond the range of X values on which the regression analysis was conducted are hazardous at best.  There is no guarantee that a relationship will continue in the same form for values of X that are beyond those that were actually observed.

Review the scatterplots you have produced and comment on any indications of curvilinearity, heteroscedasticity, nonnormality, and outliers.

MULTIPLE REGRESSION

Regression analysis can be extended to include the simultaneous effects of multiple independent variables.  The resulting equation takes a form such as:

Y = a + b1X1 + b2X2 + e,

where X1 and X2 are the values of cases on the two independent variables, a is the Y-intercept, and b1 and b2 are the two slope coefficients, and e is the error term (actual Y - predicted Y).

See a statistics text for formulae.
Now regress family income on education, age, gender, and race---but using RACED, which is a dichotomy (all variables in a regression analysis must be either quantitative or dichotomies; can you explain why?). 

ANALYZE(REGRESSION(LINEAR(DEPENDENT= INCOMEFAM06, INDEPENDENT(S)=EDUC,AGE,SEX,RACED

Examine the output produced by this command.  The value of R2 is the proportion of variance in family income explained by the combination of all 4 independent variables.  Overall, the F test indicates this level of explained variance is not likely due to chance.  The values of b (and beta) indicate the unique effects of each independent variable.  Comparing betas (which are standardized, varying from 0 to +/- 1, so they can be compared between variables having different scales), you can see that education has the strongest independent effect.  Race and gender are following the same pattern.  Age does not have a statistically significant independent effect (see the Sig T column).  

There are many unique issues and special techniques that should be considered when conducting a multiple regression analysis, some of which are also relevant for bivariate regression analysis. Issues include specification error, nonlinearity, multicollinearity, heteroscedasticity and correlated errors.  Special techniques include dummy variables, arithmetic transformations of values, analysis of residuals, and interaction effects.  It would be a good idea to sign up for an advanced statistics course to learn more about these issues and techniques.
ANALYSIS OF VARIANCE


Analysis of variance is a statistic for testing the significance of the difference between means of a dependent variable across the different values of a categorical independent variable (X).  It is based on the same model of explained and unexplained variation as regression analysis. 


Think of the separate means of Y within each category of X as the predicted values of Y in the “regression equation.”  Then, consider the following decomposition of the total variation in Y:

Total sum of squares(TSS) = Between SS(BSS) + Within SS(WSS)

That is,
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where Y refers to the individual observed values of Y and Y is the mean for each category of X.  This is just the same as the decomposition of variation in bivariate regression, as noted previously.  Use analysis of variance to test for variation in years of education across the regions in the GSS2012zx survey dataset.  

ANALYZE ( COMPARE MEANS ( MEANS ( Dependent List = EDUC; Independent List = REGION ( Options/Statistics for First Layer ( Anova table
Can we be confident at the .05 level that education varies by region (examine the significance level for the F test)?  Now compare the mean levels of education by region.  Which tend to have higher average years of education? Lower?  
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