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predict voting without knowing education, including education as a predictor significantly enhances the 
performance of the model.

By now you are aware of the interpretive challenges presented by logistic regression analysis. In running good 
old Regression  Linear, you had a mere handful of statistics to report and discuss: the constant, the regression 
coefficient(s) and accompanying P-value(s), and adjusted R-square. That’s about it. With Regression  Binary 
Logistic, there are more statistics to record and interpret. Below is a tabular summary of the results of the voted08–
educ analysis. You could use this tabular format to report the results of any logistic regressions you perform:

Model estimates and model summary: Logged odds (voting) = a + b(educ)

Model estimates Coefficient Significance Exp(B)*
Percentage 

change in odds

Constant −2.068

Education .226 .000 1.254 25.4

Model summary Value Significance

Chi-square** 147.925 .000

Cox–Snell R-square .081

Nagelkerke R-square .117

*Alternatively, this column could be labeled “Odds ratio.”

**Alternatively, this row could be labeled “Change in −2 log likelihood.”

LOGISTIC REGRESSION WITH MULTIPLE INDEPENDENT VARIABLES

The act of voting might seem simple, but we know that it isn’t. Certainly, education is not the only 
characteristic that shapes the individual’s decision whether to vote or to stay home. Indeed, we have just seen 
that years of schooling, although clearly an important predictor of turnout, returned so-so pseudo–R-square 
statistics, indicating that other factors might also contribute to the explanation. Age, race, marital status, 
strength of partisanship, political efficacy—all these variables are known predictors of turnout. What is more, 
education might itself be related to other independent variables of interest, such as age or race. Thus you 
might reasonably want to know the partial effect of education on turnout, controlling for the effects of these 
other independent variables. When performing OLS regression, you can enter multiple independent variables 
into the model and estimate the partial effects of each one on the dependent variable. Logistic regression, like 
OLS regression, can accommodate multiple predictors of a binary dependent variable. Consider this logistic 
regression model:

Logged odds (voting) = a + b1(educ) + b2(age)

Again we are in an OLS-like environment. As before, educ measures number of years of formal education. 
The variable age measures each respondent’s age in years, from 18 to 89. From a substantive standpoint, we 
would again expect b1, the coefficient on educ, to be positive: As education increases, so too should the logged 
odds of voting. We also know that older people are more likely to vote than are younger people. Thus we should 
find a positive sign on b2, the coefficient on age. Just as in OLS, b1 will estimate the effect of education on voting, 
controlling for age, and b2 will estimate the effect of age on the dependent variable, controlling for the effect of 
education. Finally, the various measures of strength—Cox–Snell, Nagelkerke, model chi-square—will give us an 
idea of how well both independent variables explain turnout.

Let’s see what happens when we add age to our model. Click Analyze  Regression  Binary Logistic. 
Everything is still in place from our previous run: voted08 is in the Dependent box and educ is in the Covariates 
box. Now locate age in the variable list and click it into the Covariates box. Click OK to run the analysis. Now 
scroll to the bottom of the output and view the results displayed in the Variables in the Equation and Model 
Summary tables.


