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APPENDIX F
QUANTITATIVE DATA ANALYSIS

Learning 
Objectives
1. Identify the types of graphs 

and statistics that are 
appropriate for analysis of 
variables at each level of 
measurement.

2. List the guidelines for 
constructing frequency 
distributions.

3. Discuss the advantages 
and disadvantages of using 
each of the three measures 
of central tendency.

4. Understand the difference 
between the variance and 
the standard deviation.

5. Define the concept of 
skewness and explain how 
it can influence measures 
of central tendency.

6. Explain how to calculate 
percentages in a cross-
tabulation table and how to 
interpret the results.

7. Discuss the three reasons 
for conducting an 
elaboration analysis.

8. Write a statement based 
on inferential statistics 
that reports the confidence 
that can be placed in a 
statistical statement of a 
population parameter.

9. Define the statistics 
obtained in a multiple 
regression analysis and 
explain their purpose.

“Oh no, not data analysis and statistics!” We now hit the chapter that you 
may have been fearing all along, the chapter on data analysis and the use 

of statistics. This appendix describes what you need to do after your data have  
been collected. You now need to analyze what you have found, interpret it, and 
decide how to present your data so that you can most clearly make the points  
you wish to make.

What you probably dread about this appendix is something that you either 
sense or know from a previous course: Studying data analysis and statistics will 
lead you into that feared world of mathematics. We would like to state at the 
beginning, however, that you have relatively little to fear. The kind of math-
ematics required to perform the data analysis tasks in this chapter is minimal. 
If you can add, subtract, multiply, and divide and are willing to put some effort 
into carefully reading the chapter, you will do well in the statistical analysis of 
your data. In fact, it is our position that the analysis of your data will require 
more in the way of careful and logical thought than in mathematical skill. One 
helpful way to think of statistics is that it consists of a set of tools that you will 
use to examine your data to help you answer the questions that motivated your 
research in the first place. Right now, the toolbox that holds your statistical 
tools is fairly empty (or completely empty). In the course of this chapter, we 
will add some fundamental tools to that toolbox. We would also like to note at 
the beginning that the kinds of statistics you will use on criminological data are 
very much the same as those used by economists, psychologists, political scien-
tists, sociologists, and other social scientists. In other words, statistical tools are 
statistical tools, and all that changes is the nature of the problem to which those 
tools are applied.

This appendix will introduce several common statistics in social research 
and highlight the factors that must be considered in using and interpreting  
statistics. Think of it as a review of fundamental social statistics, if you have 
already studied them, or as an introductory overview, if you have not.

Two preliminary sections lay the foundation for studying statistics. In 
the first, we will discuss the role of statistics in the research process, return-
ing to themes and techniques you already know. In the second preliminary  
section, we will outline the process of acquiring data for statistical analysis. 
In the rest of the chapter, we will explain how to describe the distribution of 
single variables and the relationships among variables. Along the way, we will 
address ethical issues related to data analysis. This appendix will be successful 
if it encourages you to see statistics responsibly and evaluate them critically 
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and gives you the confidence necessary to seek opportunities for extending your statistical 
knowledge.

It should be noted that, in this appendix, we focus primarily on the use of statistics for 
descriptive purposes. Those of you looking for a more advanced discussion of statistical meth-
ods used in criminal justice and criminology should seek other textbooks (e.g., Bachman and 
Paternoster, 2017). Although many colleges and universities offer social statistics in a separate 
course, we don’t want you to think of this appendix as something that deals with a different 
topic than the rest of the book. Data analysis is an integral component of research methods, 
and it’s important that any proposal for quantitative research include a plan for the data analy-
sis that will follow data collection.

INTRODUCING STATISTICS

Statistics play a key role in achieving valid research results in terms of measurement, causal 
validity, and generalizability. Some statistics are useful primarily to describe the results of 
measuring single variables and to construct and evaluate multi-item scales. These statistics 
include frequency distributions, graphs, measures of central tendency and variation, and 
reliability tests. Other statistics are useful primarily in achieving causal validity, by helping 
us describe the association among variables and control for, or otherwise take into account, 
other variables.

Cross-tabulation is one technique for measuring association and controlling other vari-
ables and is introduced in this appendix. All these statistics are called descriptive statistics 
because they are used to describe the distribution of and relationship among variables.

You learned in Chapter 5 that it is possible to estimate the degree of confidence 
that can be placed in generalizations for a sample and for the population from which the 
sample was selected. The statistics used in making these estimates are called inferential 
statistics, and they include confidence intervals, to which you were exposed in Chapter 5. In 
this appendix we will refer only briefly to inferential statistics, but we will emphasize later in 
the appendix their importance for testing hypotheses involving sample data.

Criminological theory and the results of prior research should guide our statistical 
plan or analytical strategy, as they guide the choice of other research methods. In other 
words, we want to use the statistical strategy that will best answer our research question. 
There are so many particular statistics and so many ways for them to be used in data analy-
sis that even the best statistician can become lost in a sea of numbers if she is not using 
prior research and theorizing to develop a coherent analysis plan. It is also important for 
an analyst to choose statistics that are appropriate to the level of measurement of the vari-
ables to be analyzed. As you learned in Chapter 4, numbers used to represent the values 
of variables may not actually signify different quantities, meaning that many statistical 
techniques will be inapplicable. Some statistics, for example, will be appropriate only when 
the variable you are examining is measured at the nominal level. Other kinds of statistics 
will require interval-level measurement. To use the right statistic, then, you must be very 
familiar with the measurement properties of your variables (and you thought that stuff 
would go away!).

Case Study: The Causes of Delinquency

In this appendix, we will use research on the causes of delinquency for our examples. More 
specifically, our data will be a subset of a much larger study of a sample of approximately 
1,200 high school students selected from the metropolitan and suburban high schools 

Frequency distributions: 
Numerical display 
showing the number 
of cases, and usually 
the percentage of 
cases (the relative 
frequencies), 
corresponding to each 
value or group of values 
of a variable.

Cross-tabulation (cross-
tab): A bivariate (two-
variable) distribution 
showing the distribution 
of one variable for each 
category of another 
variable.

Descriptive statistics: 
Statistics used 
to describe the 
distribution of and 
relationship among 
variables.

Inferential statistics: 
Mathematical tools for 
estimating how likely 
it is that a statistical 
result based on data 
from a random sample 
is representative of the 
population from which 
the sample is assumed 
to have been selected.
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of a city in South Carolina. These students, all of whom were in the 10th grade, com-
pleted a questionnaire that asked about such things as how they spent their spare time; 
how they got along with their parents, teachers, and friends; their attitudes about delin-
quency; whether their friends committed delinquent acts; and their own involvement in 
delinquency. The original research study was designed to test specific hypotheses about 
the factors that influence delinquency. It was predicted that delinquent behavior would 
be affected by such things as the level of supervision provided by parents, the students’ 
own moral beliefs about delinquency, their involvement in conventional activities such 
as studying and watching TV, their fear of getting caught, their friends’ involvement in 
crime, and whether these friends provided verbal support for delinquent acts. All these 
hypotheses were derived from extant criminological theory, theories we have referred to 
throughout this book. One specific hypothesis, derived from deterrence theory, predicts 
that youths who believe they are likely to get caught by the police for committing delin-
quent acts are less likely to commit delinquency than others. This hypothesis is shown in 
Exhibit F.1. The variables from this study that we will use in our appendix examples are 
displayed in Exhibit F.2.

PREPARING DATA FOR ANALYSIS

If you have conducted your own survey or experiment, your quantitative data must be pre-
pared in a format suitable for computer entry. You learned in Chapter 8 that questionnaires 
and interview schedules can be precoded to facilitate data entry by representing each response 
with a unique number. This method allows direct entry of the precoded responses into a 
computer file, after responses are checked to ensure that only one valid answer code has 
been circled (extra written answers can be assigned their own numerical codes). Most survey 
research organizations now use a database management program to control data entry. The 
program prompts the data entry clerk for each response, checks the response to ensure that it 
is a valid response for that variable, and then saves the response in the data file. Not all stud-
ies have used precoded data entry, however, and individual researchers must enter the data 

Exhibit F.1 Hypothesis for Perceived Fear of Being Caught and Delinquency

Youth Who
Perceive They

Are More Likely
to Get Caught

Will Be Less
Likely to Engage
in Delinquency
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Exhibit F.2 List of Variables for Class Examples of Causes of Delinquency

Variable SPSS Variable Name Description

Gender V1 Sex of respondent.

Age V2 Age of respondent.

TV V21 Number of hours per week the respondent watches TV.

Study V22 Number of hours per week the respondent spends studying.

Supervision V63 Do parents know where respondent is when he or she is away from 
home?

Friends think theft wrong V77 How wrong do respondent’s best friends think it is to commit petty 
theft?

Friends think drinking 
wrong

V79 How wrong do respondent’s best friends think it is to drink liquor 
under age?

Punishment for drinking V109 If respondent was caught drinking liquor under age and taken to court, 
how  much of a problem would it be?

Cost of vandalism V119 How much would respondent’s chances of having good friends be hurt 
if he or she was arrested for petty theft?

Parental supervision PARSUPER Added scale from items that ask respondent if parents know where he 
or she is and whom he or she is with when away from home. A high 
score indicates high parental supervision.

Friend’s opinion FROPINON Added scale that asks respondent if his or her best friends thought 
that committing various delinquent acts was all right. A high score 
means more support by friends for committing delinquent acts.

Friend’s behavior FRBEHAVE Added scale that asks respondent how many of his or her best friends 
commit delinquent acts.

Certainty of punishment CERTAIN Added scale that measures how likely respondent thinks it is that he 
or she will be caught by police if he or she were to commit delinquent 
acts. A high score indicates youth perceive a greater probability of 
being caught.

Morality MORAL Added scale that measures how morally wrong respondent thinks it 
is to commit diverse delinquent acts. A high score means respondent 
has strong moral inhibitions.

Delinquency DELINQ1 An additive scale that counts the number of times respondent admits 
to committing a number of different delinquent acts in the past year. 
The higher the score, the more delinquent acts she or he committed.

themselves. This is an arduous and time-consuming task, but not for us if we use secondary 
data. After all, we get the data only after they have been coded and computerized.

Of course, numbers stored in a computer file are not yet numbers that can be analyzed 
with statistics. After the data are entered, they must be checked carefully for errors, a process 
called data cleaning. If a data entry program has been used and programmed to flag invalid 
values, the cleaning process is much easier. If data are read in from a text file, a computer 
program must be written that defines which variables are coded in which columns, attaches 
meaningful labels to the codes, and distinguishes values representing missing data. The 

Data cleaning: The 
process of checking 
data for errors after the 
data have been entered 
in a computer file.
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procedures for doing so vary with each specific statistical package. We used the Windows ver-
sion of the Statistical Package for the Social Sciences (SPSS) for the analysis in this chapter; 
you will find examples of SPSS commands required to define and analyze data on the Student 
Study Site for this text, edge.sagepub.com/bachmanfrccj5e.

DISPLAYING UNIVARIATE DISTRIBUTIONS

The first step in data analysis is usually to display the variation in each variable of interest in 
what are called univariate frequency distributions. For many descriptive purposes, the analysis may 
go no further. Frequency distributions and graphs of frequency distributions are the two most 
popular approaches for displaying variation; both allow the analyst to display the distribution 
of cases across the value categories of a variable. Graphs have the advantage over numerically 
displayed frequency distributions because they provide a picture that is easier to comprehend. 
Frequency distributions are preferable when exact numbers of cases with particular values must 
be reported, and when many distributions must be displayed in a compact form.

No matter which type of display is used, the primary concern of the data analyst is to 
accurately display the distribution’s shape—that is, to show how cases are distributed across 
the values of the variable. Three features of the shape of a distribution are important: central 
tendency, variability, and skewness (lack of symmetry). All three of these features can be 
represented in a graph or in a frequency distribution.

These features of a distribution’s shape can be interpreted in several different ways, and 
they are not all appropriate for describing every variable. In fact, all three features of a dis-
tribution can be distorted if graphs, frequency distributions, or summary statistics are used 
inappropriately.

A variable’s level of measurement is the most important determinant of the appropriate-
ness of particular statistics. For example, we cannot talk about the skewness (lack of symme-
try) of a qualitative variable (measured at the nominal level). If the values of a variable cannot 
be ordered from lowest to highest, if the ordering of the values is arbitrary, we cannot say 
whether the distribution is symmetric, because we could just reorder the values to make the 
distribution more (or less) symmetric. Some measures of central tendency and variability are 
also inappropriate for qualitative variables.

The distinction between variables measured at the ordinal level and those measured at 
the interval or ratio level should also be considered when selecting statistics to use, but social 
researchers differ on just how much importance they attach to this distinction. Many social 
researchers think of ordinal variables as imperfectly measured interval-level variables and 
believe that in most circumstances statistics developed for interval-level variables also provide 
useful summaries for ordinal variables. Other social researchers believe that variation in ordi-
nal variables will often be distorted by statistics that assume an interval level of measurement. 
We will touch on some of the details of these issues in the following sections on particular 
statistical techniques.

We will now examine graphs and frequency distributions that illustrate these three fea-
tures of shape. Summary statistics used to measure specific aspects of central tendency and 
variability will be presented in a separate section. There is a summary statistic for the mea-
surement of skewness, but it is used only rarely in published research reports and will not be 
presented here.

Graphs

It is true that a picture often is worth a thousand words. Graphs can be easy to read, and 
they very nicely highlight a distribution’s shape. They are particularly useful for exploring 

Central tendency:  
A feature of a 
variable’s distribution, 
referring to the value 
or values around which 
cases tend to center.

Variability: A feature 
of a variable’s 
distribution; refers 
to the extent to 
which cases are 
spread out through 
the distribution or 
clustered in just one 
location.

Skewness: A feature 
of a variable’s 
distribution, referring 
to the extent to which 
cases are clustered 
more at one or the 
other end of the 
distribution rather than 
around the middle.
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data, because they show the full range of variation and identify data anomalies that might be 
in need of further study. And good, professional-looking graphs can now be produced rela-
tively easily with software available for personal computers. There are many types of graphs, 
but the most common and most useful are bar charts and histograms. Each has two axes, 
the vertical axis (y-axis) and the horizontal axis (x-axis), and labels to identify the variables 
and the values with tick marks showing where each indicated value falls along the axis. The 
vertical y-axis of a graph is usually in frequency or percentage units, whereas the horizontal 
x-axis displays the values of the variable being graphed. There are different kinds of graphs 
you can use to descriptively display your data, depending upon the level of measurement of 
the variable.

A bar chart contains solid bars separated by spaces. It is a good tool for displaying the 
distribution of variables measured at the nominal level and other discrete categorical vari-
ables, because there is, in effect, a gap between each of the categories. In our study of delin-
quency, one of the questions asked of respondents was whether their parents knew where the 
respondents were when the respondents were away from home. We graphed the responses 
to this question in a bar chart, which is shown in Exhibit F.3. In this bar chart we report both 
the frequency count for each value and the percentage of the total that each value represents. 
The chart indicates that very few of the respondents (only 16, or 1.3%) reported that their 
parents “never” knew where the respondents were when the respondents were not at home. 
Almost one half (562, or 44.3%) of the youths reported that their parents “usually” knew 
where the respondents were. What you can also see, by noticing the height of the bars above 
“usually” and “always,” is that most youths report that their parents provide very adequate 
supervision. You can also see that the most frequent response was “usually” and the least 
frequent was “never.” Because the response “usually” is the most frequent value, it is called 
the mode or modal response. With ordinal data like these, the mode is the most appropriate 
measure of central tendency (more about this later).

Bar chart: A graphic for 
qualitative variables 
in which the variable’s 
distribution is displayed 
with solid bars 
separated by spaces.

Percentage: Relative 
frequencies, computed 
by dividing the 
frequency of cases in 
a particular category 
by the total number of 
cases, and multiplying 
by 100.

Mode: The most 
frequent value in a 
distribution, also termed 
the probability average.

Exhibit F.3  Bar Chart Showing Youths’ Reponses on Parents Knowing Where 
They Are
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Notice that the cases tend to cluster in the two values of “usually” and “always”; in fact, 
about 80% of all cases are found in those two categories. There is not much variability in this 
distribution, then.

A histogram is like a bar chart, but it has bars that are adjacent, or right next to each 
other, with no gaps. This is done to indicate that data displayed in a histogram, unlike the 
data in a bar chart, are quantitative variables that vary along a continuum (see the discussion 
of levels of measurement for variables in Chapter 4). Exhibit F.4 shows a histogram from the 
delinquency dataset we are using. The variable being graphed is the number of hours per 
week the respondent reported to be studying. Notice that the cases cluster at the low end 
of the values. In other words, there are a lot of youths who spend between 0 and 15 hours 
per week studying. After that, there are only a few cases at each different value, with “spikes” 
occurring at 25, 30, 38, and 40 hours studied. This distribution is clearly not symmetric. In a 
symmetric distribution there is a lump of cases or a spike with an equal number of cases to the 
left and right of that spike. In the distribution shown in Exhibit F.4, most of the cases are at 
the left end of the distribution (i.e., at low values), and the distribution trails off on the right 
side. The ends of a histogram like this are often called the tail of a distribution. In a symmetric 
distribution, the left and right tails are approximately the same length. As you can clearly see 
in Exhibit F.4, however, the right tail is much longer than the left tail. When the tails of the 
distribution are uneven, the distribution is said to be asymmetrical or skewed. A skew is either 
positive or negative. When the cases cluster to the left and the right tail of the distribution is 
longer than the left, as in Exhibit F.4, our variable distribution is positively skewed. When 
the cases cluster to the right side and the left tail of the distribution is long, our variable dis-
tribution is negatively skewed.

If graphs are misused, they can distort, rather than display, the shape of a distribution. 
Compare, for example, the two graphs in Exhibit F.5. The first graph shows that high school 
seniors reported relatively stable rates of lifetime use of cocaine between 1980 and 1985. The 

Histogram: A graphic 
for quantitative 
variables in which the 
variable’s distribution 
is displayed with 
adjacent bars.

Exhibit F.4 Histogram
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Positively skewed: 
Describes a 
distribution in which 
the cases cluster to 
the left and the right 
tail of the distribution 
is longer than the left.

Negatively skewed: A 
distribution in which 
cases cluster to the 
right side, and the left 
tail of the distribution 
is longer than the right.
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Exhibit F.5 Two Graphs of Cocaine Usage
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Source: James D. Orcutt and J. Blake Turner. “Shocking Numbers and Graphic Accounts.” Social Problems, 40(2): 
190–206. Copyright © 1993, The Society for the Study of Social Problems. Reprinted with permission from 
Oxford University Press.

second graph, using exactly the same numbers, appeared in a 1986 Newsweek article on the 
coke plague (Orcutt and Turner, 1993). To look at this graph, you would think that the rate 
of cocaine usage among high school seniors increased dramatically during this period. But, 
in fact, the difference between the two graphs is due simply to changes in how the graphs 
are drawn. In the “plague” graph (B), the percentage scale on the vertical axis begins at 15 
rather than 0, making what was about a one-percentage-point increase look very big indeed. 
In addition, omission from the plague graph of the more rapid increase in reported usage 
between 1975 and 1980 makes it look as if the tiny increase in 1985 were a new, and thus 
more newsworthy, crisis.
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Adherence to several guidelines (Tufte, 1983) will help you spot these problems and 
avoid them in your own work:

• The difference between bars will be exaggerated if you cut off the bottom of the 
vertical axis and display less than the full height of the bars. Instead, begin the graph 
of a quantitative variable at 0 on both axes. It may at times be reasonable to violate 
this guideline, as when an age distribution is presented for a sample of adults, but in 
this case be sure to mark the break clearly on the axis.

• Bars of unequal width, including pictures instead of bars, can make particular values 
look as if they carry more weight than their frequency warrants. Always use bars of 
equal width.

• Either shortening or lengthening the vertical axis will obscure or accentuate the 
differences in the number of cases between values. The two axes usually should be of 
approximately equal length.

• Avoid chart junk that can confuse the reader and obscure the distribution’s shape (a 
lot of verbiage, numerous marks, lines, lots of cross-hatching, etc.).

Frequency Distributions

A frequency distribution displays the number, the percentage (the relative frequencies), or 
both for cases corresponding to each of a variable’s values or a group of values. The compo-
nents of the frequency distribution should be clearly labeled, with a title, a stub (labels for the 
values of the variable), a caption (identifying whether the distribution includes frequencies, 
percentages, or both), and perhaps the number of missing cases. If percentages are presented 
rather than frequencies (sometimes both are included), the total number of cases in the dis-
tribution (the Base N) should be indicated (see Exhibit F.6). Remember that a percentage is 
simply a relative frequency. A percentage shows the frequency of a given value relative to the 
total number of cases times 100.

Ungrouped Data

Constructing and reading frequency distributions for variables with few values is not dif-
ficult. In Exhibit F.6, we created the frequency distribution from the variable “Punishment 
for Drinking” found in the delinquency dataset (see Exhibit F.2). For this variable, the study 

Base N: The total 
number of cases in a 
distribution.

Exhibit F.6 Frequency Distribution

How much of a problem would it be if you went to court for drinking liquor under age?

Value Frequency (f ) Percentage (%)

No problem at all 14   1.1

Hardly any problem 53   4.2

A little problem 196  15.4

A big problem 421  33.1

A very big problem 588  46.2

Total 1,272 100.0
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asked the youths to respond to the following question: “How much of a problem would it be 
if you went to court for drinking liquor under age?” The frequency distribution in Exhibit F.6 
shows the frequency for each value and its corresponding percentage.

As another example of calculating the frequencies and percentages, suppose we had a 
sample of 25 youths and asked them their gender. From this group of 25 youths, 13 were 
male and 12 were female. The frequency of males (symbolized here by f ) would be 13 and 
the frequency of females would be 12. The percentage of males would be 52%, calculated by 
f/ the total number of cases × 100 (13/25 × 100 = 52%). The percentage of females would be 
12/25 × 100 = 48%.

In the frequency distribution shown in Exhibit F.6, you can see that only a very small num-
ber (14 out of 1,272) of youths thought that they would experience “no problem” if they were 
caught and taken to court for drinking liquor under age. You can see that most—in fact, 1,009—
of these youths, or 79.3% of them, thought that they would have either “a big problem” or 
“a very big problem” with this. If you compare Exhibit F.6 to Exhibit F.3, you can see that a 
frequency distribution (see Exhibit F.6) can provide much of the same information as a graph 
about the number and percentage of cases in a variable’s categories. Often, however, it is easier to 
see the shape of a distribution when it is graphed. When the goal of a presentation is to convey 
a general sense of a variable’s distribution, particularly when the presentation is to an audience 
not trained in statistics, the advantages of a graph outweigh those of a frequency distribution.

Exhibit F.6 is a frequency distribution of an ordinal-level variable; it has a very small 
number of discrete categories. In Exhibit F.7, we provide an illustration of a frequency distri-
bution with a continuous quantitative variable. This variable is one we have already looked 
at and graphed from the delinquency data, the number of hours per week the respondent 
spent studying. Notice that this variable, like many continuous variables in criminological 
research, has a large number of values. Although this is a reasonable frequency distribution 
to construct—you can, for example, still see that the cases tend to cluster in the low end of 
the distribution and are strung way out at the upper end—it is a little difficult to get a good 
sense of the distribution of the cases. The problem is that there are too many values to eas-
ily comprehend. It would be nice if we could simplify distributions like these that have a 
large number of different values. Well, we can. We can construct what is called a grouped  
frequency distribution.

Grouped Data

Many frequency distributions, such as those in Exhibit F.7, and many graphs require grouping 
of some values after the data are collected. There are two reasons for grouping:

1. There are more than 15–20 values to begin with, a number too large to be 
displayed in an easily readable table.

2. The distribution of the variable will be clearer or more meaningful if some of the 
values are combined.

Inspection of Exhibit F.7 should clarify these reasons. In this distribution it is very difficult 
to discern any shape, much less the central tendency. What we would like to now do to make 
the features of the data more visible is change the values into intervals of values, or a range of 
values. For example, rather than having five separate values of 0, 1, 2, 3, and 4 hours studied per 
week, we can have a range of values or an interval for the first value, such as 0–4 hours studied. 
Then we can get a count or frequency of the number of cases (and percentage of the total) that 
fall within that interval.

Grouped frequency 
distribution: A frequency 
distribution in which 
the data are organized 
into categories, either 
because there are 
more values than can 
be easily displayed or 
because the distribution 
of the variable will 
be clearer or more 
meaningful.
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Exhibit F.7  Frequency Distribution With Continuous Quantitative Data: 
Hours Studied per Week

Value Frequency (f ) Percentage (%)

 0 38 3.0

 1 132 10.4

 2 165 13.0

 3 116 9.1

 4 94 7.4

 5 171 13.4

 6 92 7.2

 7 73 5.7

 8 58 4.6

 9 16 1.3

10 110 8.6

11 9 0.7

12 40 3.1

13 7 0.6

14 45 3.5

15 32 2.5

16 7 0.6

17 5 0.4

18 4 0.3

19 1 0.1

20 15 1.2

21 8 0.6

22 1 0.1

23 1 0.1

24 4 0.3

25 5 0.4

29 1 0.1

30 8 0.6

35 1 0.1

37 1 0.1

(Continued)



12   Fundamentals OF ReseaRch in cRiminOlOgy and cRiminal Justice

Value Frequency (f ) Percentage (%)

40 4 0.3

42 1 0.1

50 1 0.1

60 1 0.1

61 1 0.1

65 1 0.1

70 1 0.1

75 1 0.1

80 1 0.1

Total 1,272 100.0

(Continued)

Once we decide to group values, or categories, we have to be sure that in doing so we do 
not distort the distribution. Adhering to the following guidelines for combining values in a 
frequency distribution will prevent many problems:

• Categories should be logically defensible and preserve the distribution’s shape.

• Categories should be mutually exclusive and exhaustive, so every case is classifiable in 
one and only one category.

• The first interval must contain the lowest value, and the last interval must contain the 
highest value in the distribution.

• Each interval width, the number of values that fall within each interval, should be the 
same size.

• There should be between 7 and 13 intervals. This is a tough rule to follow. The key 
is not to have so few intervals that your data are clumped or clustered into only a 
few intervals (you will lose too much information about your distribution) and not 
to have so many intervals that the data are not much clearer than an ungrouped 
frequency distribution.

Let us use the data in Exhibit F.7 on the number of hours studied by these youths to create 
a grouped frequency distribution. We will follow a number of explicit steps:

Step 1. Determine the number of intervals you think you want. This decision is arbitrary, 
but try to keep the number of intervals you have in the 7–13 range. For our example, let 
us say we initially decided we wanted to have 10 intervals. (Note, if you do your frequency 
distribution and it looks too clustered or there are too many intervals, redo your distribution 
with a different number of intervals.) Don’t worry; there are no hard and fast rules for the 
correct number of intervals, and constructing a grouped frequency distribution is as much 
art as science. Just remember that the frequency distribution you make is supposed to convey 
information about the shape and central tendency of your data.
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Step 2. Decide on the width of the interval (symbolized by wi). The interval width is the 
number of different values that fall into your interval. For example, an interval width of 5 
has five different values that fall into it, say, the values 0, 1, 2, 3, and 4 hours studied. There 
is a simple formula to approximate what your interval width should be given the number of 
intervals you decided on in the first step: Determine the range of the data, where the range 
is simply the highest score in the distribution minus the lowest score. In our data, with the 
number of hours studied, the range is 80 because the high score is 80 and the low score is 0, 
so range = 80 − 0 = 80. Then determine the width of the interval by dividing the range by 
the number of intervals you want from Step 1. We wanted 10 intervals, so our interval width 
would be wi = 80/10 = 8. We should therefore have an interval width of 8. If you use this 
simple formula for determining your interval width and you end up with a decimal, say 8.2 or 
8.6, then simply round up or down to an integer.

Step 3. Make your first interval so that the lowest value falls into it. Our lowest value is 
0 (for studied 0 hours per week), so our first interval begins with the value 0. Now, if the 
beginning of our first interval is 0 and we want an interval width of 8, is the last value of 
our interval 7 (with a first interval of 0–7 hours), or is the last value of our interval 8 (with 
a first interval of 0–8 hours)? One easy way to make a grouped frequency distribution is 
to do the following: Take the beginning value of your first interval (in our case, it is 0),  
and add the interval width to that value (8). This new value is the first value of your 
next interval. What we know, then, is that the first value of our first interval is 0, and the 
first value of our second interval is 8 (0–?, 8–?). This must mean that the last value to be 
included in our first interval is one less than 8, or 7. Our first interval, therefore, includes 
the range of values 0–7. If you count the number of different values in this interval, you 
will find that it includes eight different values (0, 1, 2, 3, 4, 5, 6, 7). This is our interval 
width of 8.

Step 4. After your first interval is determined, the next intervals are easy. They must be the 
same width and not overlap (mutually exclusive). You must make enough intervals to include 
the last value in your variable distribution. The highest value in our data is 80 hours per week, 
so we construct the grouped frequency distribution as follows:

 0–7

 8–15

16–23

24–31

32–39

40–47

48–55

56–63

64–71

72–79

80–87

Notice that in order to include the highest value in our data (80 hours) we had to make  
11 intervals instead of the 10 we originally decided upon in Step 1. No problem. Remember,  
the number of intervals is arbitrary and this is as much art as science.
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Step 5. Count the number or frequency of cases that appear in each interval and their 
percentage of the total. The completed grouped frequency distribution is shown in Exhibit F.8.  
Notice that this grouped frequency distribution conveys the important features of the 
distribution of these data. Most of the data cluster at the low end of the number of hours 
studied. In fact, more than two thirds of these youths studied less than 8 hours per week. 
Notice also that the frequency of cases thins out at each successive interval. In other words, 
there is a long right tail to this distribution, indicating a positive skew because fewer youths 
studied a high number of hours. Notice also that the distribution was created in such a way 
that the interval widths are all the same, and each case falls into one and only one interval (i.e., 
the intervals are exhaustive and mutually exclusive). We would have run into trouble if we 
had two intervals like 0–7 and 7–14, because we would not know where to place those youths 
who spent 7 hours a week studying. Should we put them in the first or second interval? If the 
intervals are mutually exclusive, as they are here, you will not run into these problems.

Exhibit F.8  Example of a Grouped Frequency Distribution From Hours 
Studied

Value Frequency (f) Percentage (%)

 0–7 881 69.26

 8–15 317 24.92

16–23 42 3.30

24–31 18 1.42

32–39 2 0.16

40–47 5 0.39

48–55 1 0.08

56–63 2 0.16

64–71 2 0.16

72–79 1 0.08

80–87 1 0.08

Total 1,272 100.00

Note: Total may not equal 100.0% due to rounding error.

SUMMARIZING UNIVARIATE DISTRIBUTIONS

Summary statistics, sometimes called descriptive statistics, focus attention on particular 
aspects of a distribution and facilitate comparison among distributions. For example, suppose 
you wanted to report the rate of violent crimes for each city in the United States with over 
100,000 in population. You could report each city’s violent crime rate, but it is unlikely that 
two cities would have the same rate, and you would have to report approximately 200 rates, 
one for each city. This would be a frequency distribution that many, if not most, people would 
find difficult to comprehend. One way to interpret your data for your audience would be to 
provide a summary measure that indicates what the average violent crime rate is in large U.S. 
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cities. That is the purpose of the set of summary statistics called measures of central tendency. 
You would also want to provide another summary measure that shows the variability or het-
erogeneity in your data—in other words, a measure that shows how different the scores are 
from each other or from the central tendency. That is the purpose of the set of summary 
statistics called measures of variation or dispersion. We will discuss each type of measurement 
in turn.

Measures of Central Tendency

Central tendency is usually summarized with one of three statistics: the mode, the median, or 
the mean. For any particular application, one of these statistics may be preferable, but each 
has a role to play in data analysis. To choose an appropriate measure of central tendency, the 
analyst must consider a variable’s level of measurement, the skewness of a quantitative vari-
able’s distribution, and the purpose for which the statistic is used. In addition, the analyst’s 
personal experiences and preferences inevitably will play a role.

Mode

The mode is the most frequent value in a distribution. For example, refer to the data in 
Exhibit F.8, which shows the grouped frequency distribution for the number of hours studied. 
The value with the greatest frequency in those data is the interval 0–7 hours; this is the mode 
of that distribution. Notice that the mode is the most frequently occurring value; it is not the 
frequency of that value. In other words, the mode in Exhibit F.8 is 0–7 hours; the mode is not 
881, which is the frequency of the modal category. To show how the mode can also be thought 
of as the value with the highest probability, refer to Exhibit F.9. Suppose you had this grouped 
frequency distribution but knew nothing else about each of the 1,272 youths in the study. If 
you were to pick a case at random from the distribution of 1,272 youths and were asked how 
many hours the youth studied per week, what would your best guess be? Well, since 881 of the 
1,272 youths fall into the first interval of 0–7 hours studied, the probability that a randomly 
selected youth studied from 0 to 7 hours would be .696 (881/1,272). This is higher than the 
probability of any other interval. It is the interval with the highest probability because it is the 
interval with the greatest frequency or mode of the distribution. When a variable distribu-
tion has one case or interval that occurs more often than the others, it is called a unimodal 
distribution. The ordinal variable of “parents knowing kids’ whereabouts” in Exhibit F.3 is 
also unimodal. The category with the highest percentage is “usually.”

Sometimes a distribution has more than one mode because there are two values that have 
the highest frequency. This distribution would be called bimodal. Some distributions are tri-
modal in that there are three distinctively high frequency values. When there is no frequency 
much higher than another, it is even possible to have a distribution without a mode. In saying 
that there is no mode, though, you are communicating something very important about the 
data: that no case is more common than the others. Another potential problem with the mode 
is that it might happen to fall far from the main clustering of cases in a distribution. It would 
be misleading in this case, then, to say simply that the variable’s central tendency was the same 
as the modal value.

Nevertheless, there are occasions when the mode is very appropriate. Most important, 
the mode is the only measure of central tendency that can be used to characterize the central 
tendency of variables measured at the nominal level. In Exhibit F.9 we have the frequency 
distribution of the conviction offense for 1,000 offenders convicted in a criminal court. The 
central tendency of the distribution is property offense, because more of the 1,000 offenders 
were convicted of a property crime than any other crime. For the variable “type of offense 
convicted of,” the most common value is property crime. The mode also is often referred to in 
descriptions of the shape of a distribution. The terms unimodal and bimodal appear frequently, 

Unimodal distribution: 
A distribution of a 
variable in which there 
is only one value that is 
the most frequent.

Bimodal distribution: 
A distribution that 
has two nonadjacent 
categories with about 
the same number 
of cases, and these 
categories have more 
cases than any other 
categories.
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as do descriptive statements such as “The typical (most 
probable) respondent was in her 30s.” Of course, when 
the issue is determining the most probable value, the 
mode is the appropriate statistic.

Median

The median is the score in the middle of a rank-
ordered distribution. It is, then, the score or point that 
divides the distribution in half (the 50th percentile). 
The median is inappropriate for variables measured at 
the nominal level because their values cannot be put in 
ranked order (remember, there is no “order” to nom-
inal-level data), and so there is no meaningful middle 
position. To determine the median, we simply need to 
do the following. First, rank-order the values from low-

est to highest. Because the median is a positional measure, we then have to find the position of 
the median in the rank order of scores by using the following simple formula:

N +1
2

where N is equal to the total number of cases.
In Exhibit F.10, we first list a sample of 17 U.S. cities 

and their rate of violent crime. We are going to calculate the 
median from two samples taken from this list, one sample of 
nine cities and another sample of eight cities.

The first sample of nine cities is shown in Exhibit F.10a.
In this sample of nine cities, we first must find the median 

position, which is determined by (9 + 1)/2 = 10/2 = 5. The 
median violent crime rate, then, is in the fifth position in this 
rank order. Starting either at the top of the scores and count-
ing down to the fifth position or at the bottom and counting 
up, we find that in the fifth position is the score 1,861 violent 
crimes per 100,000, which is the median violent crime rate 
for these nine U.S. cities. Now, let us find the median in the 
second list, which has only eight cities that are rank ordered 
in Exhibit F.10b.

Now our median position is: (8 + 1)/2 = 9/2 = 4.5. Because 
we now have to find the value of the median between the 
fourth and fifth positions, we have to find the average of the 
values that fall in these two positions. The score at the fourth 
position is 1,861, and the score at the fifth is 1,887. The value 
of the median can now be found by adding these two scores 
and dividing by 2. The median rate of violent crime for this 
sample of eight cities, then, is equal to (1,861 + 1,887)/2 = 
1,874 violent crimes per 100,000 population.

This tells us that 50% of the cities have violent crime 
rates lower than 1,874 and 50% of the cities have violent 
crime rates higher than 1,874.

Because the median is the score at the 50th percentile, 
we can also identify it in a frequency distribution by finding 
the value corresponding to a cumulative percentage of 50. We 

Exhibit F.9  Frequency Distribution of Offense 
for 1,000 Convicted Offenders

Type of Offense Frequency (f)

Violent 125

Drug 210

Property 480

Public order 100

Other 85

Total 1,000

Median: The position 
average, or the 
point that divides a 
distribution in half (the 
50th percentile).

Exhibit F.10  Hypothetical Rate of Violent 
Crime for Selected U.S. Cities

City
Number of Violent Crimes 

per 100,000

1. Atlanta 3,571

2. Boston 1,916

3. Cleveland 1,530

4. Dallas 1,589

5. Los Angeles 2,059

6. New Orleans 1,887

7. New York 1,861

8. Philadelphia 1,322

9. San Francisco 1,461

1. Atlanta 3,571

2. Boston 1,916

3. Cleveland 1,530

4. Dallas 1,589

5. Los Angeles 2,059

6. New Orleans 1,887

7. New York 1,861

8. Philadelphia 1,322
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Exhibit F.10a  Sample of Nine Cities From 
Exhibit F.10

Rank Crime Rate

1 1,322

2 1,530

3 1,589

4 1,861

5 1,887

6 1,916

7 2,059

8 3,571

Rank Crime Rate

1 1,322

2 1,461

3 1,530

4 1,589

5 1,861

6 1,887

7 1,916

8 2,059

9 3,571

Exhibit F.10b  Sample of Eight Cities From 
Exhibit F.10

show you how to do this in Exhibit F.11. These data are a repeat of the data in Exhibit F.7, and 
show the number of hours studied for the youths in the delinquency dataset.

To find the 50th percentile, we simply added a new column to these data, labeled “cumula-
tive percentage.” Cumulative percentages are found by taking the percentage of the interval 
percentage plus all others below it. So the first value (3.0%) would be entered as the first 
cumulative percentage, because there are no other intervals below the first. This cumulative 
percentage simply means that 3% of the youths studied for 0 hours per week. Then we add the 
percentage in the next value (10.4%) to this to arrive at a cumulative percentage of 13.4%. This 
means that 13.4% of the youths studied for 1 hour per week or less. This becomes the second 
entry in the cumulative percentage column. We continue adding each adjacent percentage 
value until we reach 50%. There is a cumulative percentage of 56.3% at the value of 5 hours 
per week. The median number of hours studied per week, then, is 5 hours. Of the respondents, 
50% studied less than 5 hours per week, and 50% studied more than 5 hours per week.

Mean

The mean is simply the arithmetic average of all scores in a distribution. It is computed by 
adding up the value of all the cases and dividing by the total number of cases, thereby taking 
into account the value of each case in the distribution:

Mean = Sum of value of all cases / number of cases

The symbol for the mean is X (pronounced “X-bar”). In algebraic notation, the  
equation is

X
x

N
i

N

= ∑1

where xi is a symbol for each ith score and i’s go from 1 to N; N is the total number of cases. 
What the algebraic equation says to do is to sum all scores, starting at the first score and con-
tinuing until the last, or Nth, score; then divide this sum by the total number of cases (N).

Mean: The arithmetic, 
or weighted, average, 
computed by adding 
up the value of all the 
cases and dividing by 
the total number of 
cases.
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Exhibit F.11  Frequency Distribution With Continuous Quantitative Data: 
Hours Studied per Week

Value Frequency (f ) Percentage (%) Cumulative Percentage

 0 38 3.0  3.0

 1 132 10.4 13.4

 2 165 13.0 26.4

 3 116 9.1 35.5

 4 94 7.4 42.9

 5 141 13.4 56.3 (includes 50th 
percentile)

 6 92 7.2

 7 73 5.7

 8 58 4.6

 9 16 1.3

10 110 8.6

11 9 0.7

12 40 3.1

13 7 0.6

14 45 3.5

15 32 2.5

16 7 0.6

17 5 0.4

18 4 0.3

19 1 0.1

20 15 1.2

21 8 0.6

22 1 0.1

23 1 0.1

24 4 0.3

25 5 0.4

29 1 0.1

30 8 0.6

35 1 0.1

37 1 0.1
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Value Frequency (f ) Percentage (%) Cumulative Percentage

40 4 0.3

42 1 0.1

50 1 0.1

60 1 0.1

61 1 0.1

65 1 0.1

70 1 0.1

75 1 0.1

80 1 0.1

Total 1,272 100.0

We will calculate the mean rate of violent crime for the nine U.S. cities listed in  
Exhibit F.10a:

X =
+ + + + + + + +( , , , , , , , , , )1 322 1 461 1 530 1 589 1 861 1 887 1 916 2 059 3 571

9
==1 910 7, .

The mean rate of violent crime for these nine U.S. cities, then, is 1,910.7 violent crimes 
per 100,000 population. When calculating the mean, we do not have to first rank-order the 
scores. The mean takes every score into account, so it does not matter if we add 3,571 first, in 
the middle, or last.

Computing the mean requires adding up the values of the cases, so it makes sense to 
compute a mean only if the values of the cases can be treated as actual quantities—that is, if 
they reflect an interval or ratio level of measurement, or if they are ordinal and we assume that 
ordinal measures can be treated as intervals. It would make no sense, however, to calculate the 
mean for the variable racial or ethnic status. Imagine a group of four people in which there 
were two Caucasians, one African American, and one Hispanic. To calculate the mean you 
would need to solve the equation (Caucasian + Caucasian + African American + Hispanic)/4 = ?  
Even if you decide that Caucasian = 1, African American = 2, and Hispanic = 3 for data entry 
purposes, it still does not make sense to add these numbers, because they do not represent 
real numerical quantities. In other words, just because you code Caucasian as “1” and African 
American as “2,” that does not mean that African Americans possess twice the race or ethnic-
ity that Caucasians possess. To see how numerically silly this is, note that we could just as 
easily have coded African Americans as “1” and Caucasians as “2.” Now, with one arbitrary flip 
of our coding scheme, Caucasians have twice as much race or ethnicity as African Americans. 
Thus, both the median and the mean are not appropriate measures of central tendency for 
variables measured at the nominal level.

Median or Mean?

Both the median and the mean are used to summarize the central tendency of quantitative 
variables, but their suitability for a particular application must be carefully assessed.

The key issues to be considered in this assessment are the variable’s level of measure-
ment, the shape of its distribution, and the purpose of the statistical summary. Consideration 
of these issues will sometimes result in a decision to use both the median and the mean and 
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will sometimes result in neither measure being seen as preferable. But in many other situ-
ations, the choice between the mean and median will be clear-cut as soon as the researcher 
takes the time to consider these three issues.

Level of measurement is a key concern, because to calculate the mean, we must add up 
the values of all the cases, a procedure that assumes the variable is measured at the interval 
or ratio level. So even though we know that coding Agree as 2 and Disagree as 3 does not 
really mean that Disagree is one unit more of disagreement than Agree, the mean assumes 
this evaluation to be true. Calculation of the median requires only that we order the values 
of cases, so we do not have to make this assumption. Technically speaking, then, the mean is 
simply an inappropriate statistic for variables measured at the ordinal level (and you already 
know that it is completely meaningless for nominal variables). In practice, however, many 
social researchers use the mean to describe the central tendency of variables measured at the 
ordinal level, for the reasons outlined earlier.

The shape of a variable’s distribution should also be taken into account when deciding 
whether to use the median or the mean. When a distribution is perfectly symmetric (i.e., 
when the distribution is bell shaped), the distribution of values below the median is a mir-
ror image of the distribution of values above the median, and the mean and median will be 
the same. But the values of the mean and median are affected differently by skewness, or the 
presence of cases with extreme values on one side of the distribution but not the other side. 
The median takes into account only the number of cases above and below the median point, 
not the value of these cases, so it is not affected in any way by extreme values. The mean is 
based on adding the value of all the cases, so it will be pulled in the direction of exceptionally 
high (or low) values. When the value of the mean is larger than the median, we know that 
the distribution is skewed in a positive direction, with proportionately more cases with lower 
than higher values. When the mean is smaller than the median, the distribution is skewed in 
a negative direction.

The differential impact of skewness and/or outliers on the median and the mean can be 
illustrated with a simple thought exercise. Let’s assume your class has 20 people and we ask 
you each to tell us your family of origin’s family income for the past year. We determine that 
the mean income for the families for your class members is $72,000. We also find that the 
median income is $54,000, which tells us that 50% of the families make less than $54,000 
and 50% of families make more. Now imagine one of Bill Gate’s kids enrolls in the class.  
Bill Gates is estimated to make over $3.5 billion annually. Wow. That makes the mean  
income for the class $166,735,238. Clearly, this figure does not represent the “typical” family  
income any longer. Notice that despite Bill Gates’s child entering the class, the median  
family income would still remain $54,000. As you can see, the median now becomes a much 
better measure to use when describing the “typical” family income!

Measures of Variation

You have learned that central tendency is only one aspect of the shape of a distribution. 
Although the measure of center is the most important aspect for many purposes, it is still just 
a piece of the total picture. A summary of distributions based only on their central tendency 
can be very incomplete, even misleading. For example, three towns might have the same 
mean and median crime rate but still be very different in their social character due to the 
shape of the crime distributions. We show three distributions of community crime rates for 
three different towns in Exhibit F.12. If you calculate the mean and median crime rate for 
each town, you will find that the mean and median crime rate is the same for all three. In 
terms of its crime rate, then, each community has the same central tendency.

As you can see, however, there is something very different about these towns. Town A is 
a very heterogeneous town; crime rates in its neighborhoods are neither very homogeneous 
nor clustered at either the low or high end. Rather, the crime rates in its neighborhoods are 
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Median Lifetime Earnings

If you are feeling a bit overwhelmed and wondering 
whether going to college was worth it, a story from 
the Washington Post will lift your spirits. It highlights 
a study that utilized census data to investigate the 
lifetime earnings of people by their level of education. 
The study also examined the difference in lifetime 
earnings across many different college majors. If you 
are taking this class, you are probably not getting 
your major to make millions of dollars, but to help 
people and improve society in some way, right? The 
article presents a bar graph of the “median” lifetime 
earnings by college major. While engineering and 

computer science majors are at that top of the pack 
in terms of earnings, criminal justice and criminol-
ogy majors are above many majors.

Questions About the Article?

1. Why do you think the research presented 
median earnings rather than mean earnings 
over the lifetime?

2. What other statistics would you like to know 
from this article?

Source: Guo, Jeff. 2014. “Want Proof College is Worth It?” Washington Post, September 29. http://www.washingtonpost.com/news/
storyline/wp/2014/09/29/ want-proof-college-is-worth-it-look-at-this-list-of-the-highest-paying-majors/

Exhibit F.12 Neighborhood Crime Rates in Three Different Towns

Town A Town B Town C

19.5 58.1   8.9

28.2 59.7  15.4

35.7 60.1  18.3

41.9 62.7  21.9

63.2 63.2  63.2

75.8 63.9 103.5

92.0 64.2 104.2

95.7 64.5 110.7

109.4 65.0 105.3

spread out from one another. Crime rates in these neighborhoods are, then, very diverse. 
Town B is characterized by neighborhoods with very homogeneous crime rates; there are no 
real high or low crime areas, because the rate in each neighborhood is not far from the overall 
mean of 62.4 crimes per 1,000. Town C is characterized by neighborhoods with either very 
low crime rates or very high crime rates. Crime rates in the first four neighborhoods are much 
lower than the mean (62.4 crimes per 1,000), whereas those in the last four neighborhoods 
are much higher than the mean. Although they share identical measures of central tendency, 
these three towns have neighborhood crime rates that are very different.

The way to capture these differences is with statistical measures of variation. Four popu-
lar measures of variation are the range, the interquartile range, the variance, and the standard 
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deviation (which is the most popular measure of variability). To calculate each of these mea-
sures, the variable must be at the interval or ratio level. Statistical measures of variation are 
used infrequently with qualitative variables, so statistical measures will not be presented here.

Range

The range is a simple measure of variation, calculated as the highest value in a distribution 
minus the lowest value:

Range = Highest value – Lowest value

It often is important to report the range of a distribution, to identify the whole range 
of possible values that might be encountered. However, because the range can be drasti-
cally altered by just one exceptionally high or low value (called an outlier), it does not do an 
adequate job of summarizing the extent of variability in a distribution. For our three towns in 
Exhibit F.12, the range in crime rates for Town A is 89.9 (109.4 − 19.5), for Town B it is 6.9 
(65.0 − 58.7), and for Town C it is 106.4 (115.3 − 8.9).

Interquartile Range

A version of the range statistics, the interquartile range, avoids the problem created by 
unusually high or low scores in a distribution. It is the difference between the scores at the 
first and third quartiles. Quartiles are the points in a distribution corresponding to the first 
25% of the cases (the first quartile), the first 50% of the cases (the second quartile), and the 
first 75% of the cases (the third quartile). You already know how to determine the second 
quartile, corresponding to the point in the distribution covering half of the cases; it is another 
name for the median. The first and third quartiles are determined in the same way, but by 
finding the points corresponding to 25% and 75% of the cases, respectively.

Variance

If the mean is a good measure of central tendency, then it would seem that a good measure 
of variability would be the distance each score is away from the mean. Unfortunately, we 
cannot simply take the average distance of each score from the mean. One property of the 
mean is that it exactly balances negative and positive distances from it, so if we were to sum 
the difference between each score in a distribution and the mean of that distribution, it would 
always sum to zero. What we can do, though, is to square the difference of each score from 
the mean so the distance retains its value. This is the notion behind the variance as a measure 
of variability.

The variance is the average square deviation of each case from the mean, so it takes into 
account the amount by which each case differs from the mean. The equation to calculate the 
variance is:

s
N

2
2

1
=

−
Σ −( )x X

In words, this formula says to take each score and subtract the mean, then square this dif-
ference, then sum all these differences, and then divide this sum by N or the total number of 
scores. Calculations for the variance for the crime rate data from Town A in Exhibit F.12 are 
shown in the table that follows.

Range: The true upper 
limit in a distribution 
minus the true lower 
limit (or the highest 
rounded value minus the 
lowest rounded value, 
plus one).

Outlier: An exceptionally 
high or low value in a 
distribution.

Interquartile range: The 
range in a distribution 
between the end of the 
first quartile and the 
beginning of the third 
quartile.

Quartiles: The points 
in a distribution 
corresponding to the 
first 25% of the cases, 
the first 50% of the 
cases, and the top 25% 
of the cases.

Variance: A statistic 
that measures the 
variability of a 
distribution as the 
average squared 
deviation of each score 
from the mean of all 
scores.



 appendix F • Quantitative data analysis   23

x ( )x X− ( )2x X−

 19.5   (19.5 ~ 62.4) = −42.9 1,840.41

 28.2   (28.2 ~ 62.4) = −34.2 1,169.64

 35.7   (35.7 ~ 62.4) = −26.7 712.89

 41.9   (41.9 ~ 62.4) = −20.5 420.25

 63.2  (63.2 ~ 62.4) = −0.8 0.64

 75.8  (75.8 ~ 62.4) = 13.4 179.56

 92.0  (92.0 ~ 62.4) = 29.6 876.16

 95.7  (95.7 ~ 62.4) = 33.3 1,108.89

109.4 (109.4 ~ 62.4) = 47.0 2,209.00

Σ −(x X ) 0= Σ −(x X ) 8,517.44
2
=

We can now determine that the variance is

s2
8 517 44

8
1 064 68= =

, .
, .

The variance of these data, then, is 1,064.68. In “squared deviation units,” the variance tells 
us the amount of variation the distribution has around its mean. We had to square the original 
deviation units before summing them, because Σ −( ) .x X = 0  For most people, however, it is 
difficult to grasp “squared deviation units.” For this reason, we typically take the square root 
of this value, called the standard deviation, to bring the variable back to its original units of 
measurement.

Standard Deviation

The standard deviation is simply the square root of the variance. It is the square root of the 
average squared deviation of each case from the mean:

s
N

=
−

Σ( −x X )2

1

To find the standard deviation, then, simply calculate the variance and take the square root. For 
our example, the standard deviation is

s = =1,064.68 32.62

This value tells us that, on average, the neighborhood crime rates in Town A vary 32.62 
around their mean of 62.4.

The standard deviation has mathematical properties that make it the preferred mea-
sure of variability in many cases. In particular, the calculation of confidence intervals around 
sample statistics, which you learned about in Chapter 5, relies on an interesting property of 
normal curves. Areas under the normal curve correspond to particular distances from the 

Standard deviation: 
The square root of 
the average squared 
deviation of each case 
from the mean.
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mean, expressed in standard deviation units. If a variable is normally distributed, 68% of the 
cases will lie between plus and minus 1 standard deviation from the distribution’s mean, and 
95% of the cases will lie between 1.96 standard deviations above and below the mean. Cases 
that fall beyond plus or minus 1.96 standard deviations from the mean are termed outliers. 
Because of this property, the standard deviation tells us quite a bit about a distribution, if the 
distribution is normal. This same property of the standard deviation enables us to infer how 
confident we can be that the mean (or some other statistic) of a population sampled randomly 
is within a certain range of the sample mean (see Chapter 5).

CROSS-TABULATING VARIABLES

Most data analyses focus on relationships among variables to test hypotheses or just to describe 
or explore relationships. For each of these purposes, we must examine the association among 
two or more variables. Cross-tabulation (cross-tab) is one of the simplest methods for doing 
so. A cross-tabulation displays the distribution of one variable for each category of another 
variable; it can also be called a bivariate distribution. Cross-tabs also provide a simple tool 
for statistically controlling one or more variables while examining the associations among 
others. In this section, you will learn how cross-tabs used in this way can help test for spuri-
ous relationships and evaluate causal models. Cross-tabulations are usually used when both 
variables are measured at either the nominal or the ordinal level—that is, when the values of 
both variables are categories.

We are going to provide a series of examples of cross-tabulations from our delinquency 
data. In our first example, the independent variable we are interested in is the youth’s gender 
(V1, see Exhibit F.2), and the dependent variable is the youth’s self-reported involvement in 
delinquent behavior (DELINQ1). To use the delinquency variable in a cross-tabulation, how-
ever, we first need to recode it into a categorical variable. We will make three approximately 
equal categories of self-reported delinquency: low, medium, and high. Using the SPSS recode 
command, we will create another variable called DELINQ2 using the following recode 
commands:

(0 − 2 = 1)

(3 − 13 = 2)

(14 − 118 = 3)

Anyone who reported from none to two delinquent acts is now coded as 1, or low delin-
quency; anyone reporting from three to 13 delinquent acts is now coded as 2, or medium 
delinquency; and anyone reporting 14 or more delinquent acts is now coded as 3, or high delin-
quency. If you were to do a frequency distribution of this new variable, DELINQ2, you would 
see that there are three approximately equal groups.

We are interested in the relationship between gender and delinquency because a great 
deal of delinquency theory would predict that males are more likely to be delinquent than 
females. The gender of the youth is the independent variable, and the level of self-reported 
delinquency is the dependent variable.

Exhibit F.13 shows the cross-tabulation of gender with DELINQ2. Some explanation of 
this table is in order. Notice that there are two values of gender (male and female) that com-
prise the values in the two rows of the table, and three values of delinquency (low, medium, 
and high) that comprise the values in the three columns of the table. Cross-tabulations are 
usually referred to by the number of rows and columns the table has. Our cross-tabulation 
in Exhibit F.13 is a 2 × 3 (pronounced “two-by-three”) table because there are two rows 
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Exhibit F.13 Cross-Tabulation of Respondents’ Gender by Delinquency

Self-Reported Delinquency

Low Medium High Total

Gender

Female 275
40.4%

182
26.8%

223
32.8%

680
100%

Male 175
29.6%

166
28.0%

251
42.4%

592
100%

Total 450 348 474 1,272

and three columns. Notice also that there are values at the end of each row and at the end 
of each column. These totals are referred to as the marginals of the table. These marginal 
distributions provide the sum of the frequencies for each column and each row of the table. 
For example, there are 680 females in the data and 592 males. These row marginals should 
sum to the total number of youths in the dataset: 1,272. There are 450 youths who are low in 
delinquency, 348 youths who are medium in delinquency, and 474 youths who are high on the 
delinquency variable. These column marginals should also sum to the total number of youths 
in the dataset: 1,272.

Now notice that there are 2 × 3 or 6 data entries in the table (let us ignore the percent-
ages for now). These data entries are called the cells of the cross-tabulation and represent the 
joint distribution of the two variables: gender and delinquency. The table in Exhibit F.13 has 
six cells for the joint distribution of two levels of gender with three levels of delinquency. In 
other words, notice where the value for female converges with the value of low for delin-
quency. You see a frequency number of 275 in this cell. This frequency is how many times 
there is the joint occurrence of a female and low delinquency; it shows that 275 females were 
also low in delinquency. Moving to the cell to the right of this, we see that there are 182 
females who were medium in delinquency, and moving to the right again we see that there 
are 223 females who were high in delinquency. The sum of these three numbers is equal to 
the total number of females, 680. The row for the males shows the joint distribution of males 
with each level of delinquency.

What we would like to know is whether there is a relationship or an association between 
gender and delinquency. In other words, are males more likely to be delinquent than females? 
Because raw frequencies can provide a deceptive picture, we determine whether there is any 
relationship between our independent and dependent variables by looking at the percentages. 
Keep in mind that the idea in looking at relationships is that we want to know if variation on 
the independent variable has any effect on the dependent variable. To determine this, what 
we always do in cross-tabulation tables is to calculate our percentages on each value of the 
independent variable. For example, notice that in Exhibit F.13, gender is our independent 
variable. We calculated our percentages so that for each value of gender the percentages sum 
to 100% at the end of each row. The percentages for both females and males, therefore, sum 
to 100% at the end of the row. Now we take a given category of the dependent variable and 
ask what percentage of each independent variable value falls into that category of the depen-
dent variable. Another way to say this is that we calculate our percentages on the independent 
variable and compare them to percentages on the dependent variable. We compare the per-
centages for different levels of the independent variable on the same category or level of the 
dependent variable.

In Exhibit F.13, for example, notice that 40.4% of the female youths were low in delin-
quency, but only 29.6% of the males were low. This tells us that females are more likely to be 

Marginal distributions: 
The summary 
distributions in the 
margins of a cross-
tabulation that 
correspond to the 
frequency distribution 
of the row variable and 
of the column variable.
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low in delinquency than males. Now let us look at the high category. We can see that 32.8% 
of the females were high in delinquency and 42.4% of the males were high. Together, this 
tells us that females are more likely to be low in delinquency and males are more likely to 
be high in delinquency. There is, then, a relationship between gender and delinquency. Also 
notice that the independent variable was the row variable and the dependent variable was the 
column variable. It does not always have to be this way; the independent variable could just 
as easily have been the column variable. The important general rule to remember is to always 
calculate your percentages on the levels of the independent variable (e.g., use marginal totals 
for the independent variable as denominators), and compare percentages on a level of the 
dependent variable.

In Exhibit F.14, we report the same data as in Exhibit F.13, this time switching the rows 
and the columns. Now, the independent variable (gender) is the column variable, so we cal-
culate our percentage going down each of the two columns. We then compare percentages 
across rows. For example, we still see that 40.4% of the females were low in delinquency, 
whereas only 29.6% of the males were. And 42.4% of the males were high in delinquency, but 
only 32.8% of the females were high in delinquency.

Describing Association

A cross-tabulation table reveals four aspects of the association between two variables:

• Existence. Do the percentage distributions vary at all among categories of the 
independent variable?

• Strength. How much do the percentage distributions vary among categories of the 
independent variable?

• Direction. For quantitative variables, do values on the dependent variable tend to 
increase or decrease with an increase in value of the independent variable?

• Pattern. For quantitative variables, are changes in the percentage distribution of the 
dependent variable fairly regular (simply increasing or decreasing), or do they vary 
(perhaps increasing, then decreasing, or perhaps gradually increasing, then rapidly 
increasing)?

Exhibit F.14 Cross-Tabulation of Respondents’ Delinquency by Gender

Gender

Female Male Total

Self-Reported 
Delinquency

Low 275
40.4%

175
29.6%

450

Medium 182
26.8%

166
28.0%

348

High 223
32.8%

251
42.4%

474

Total 680
100%

592
100%

1,272
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Exhibit F.14 shows that an association exists between delinquency and gender, although we 
can say only that it is a modest association. The percentage difference at the low and high ends 
of the delinquency variables is approximately 10 percentage points.

We provide another example of a cross-tabulation in Exhibit F.15. This is a 3 × 3 table 
that shows the relationship between how morally wrong a youth thinks delinquency is (the 
independent variable) and his or her self-reported involvement in delinquency (the depen-
dent variable). This table reveals a very strong relationship between moral beliefs and delin-
quency. We can see that 5.6% of youths with weak moral beliefs are low on delinquency; this 
increases to 33.8% for those with medium beliefs and to 62.8% for those with strong moral 
beliefs. At the high end, over two thirds (72.1%) of those youths with weak moral beliefs are 
high in delinquency, 29.4% of those with medium moral beliefs are high in delinquency, and 
only 16.9% of those youths with strong moral beliefs are high in delinquency. Clearly, then, 
having strong moral beliefs serves to effectively inhibit involvement in delinquent behavior. 
This is exactly what control theory would have us believe.

Exhibit F.15 shows an example of a negative relationship between an independent and 
a dependent variable. As the independent variable increases (i.e., as one goes from weak to 
strong moral beliefs), the likelihood of delinquency decreases (one becomes less likely to 
commit delinquency). The independent and dependent variables move in opposite directions, 
so this is a negative relationship. The pattern in this table is close to what is called monotonic. 
In a monotonic relationship, the value of cases consistently increases (or decreases) on one 
variable as the value of cases increases (or decreases) on the other variable. Monotonic is often 
defined a bit less strictly, with the idea that as the value of cases on one variable increases (or 
decreases), the value of cases on the other variable tends to increase (or decrease), and at least 
does not change direction. This describes the relationship between moral beliefs and delin-
quency. Delinquency is most likely when moral beliefs are low, less likely when moral beliefs 
are medium, and least likely when moral beliefs are strong.

We present another cross-tabulation table for you in Exhibit F.16. This table shows the 
relationship between the variable “number of hours studied” and the variable “certainty of 
punishment” (see Exhibit F.2). Both variables were originally continuous variables that we 
recoded into three approximately equal groups for this example. We hypothesize that those 
youths who study more will have a greater perceived risk of punishment than those who study 
less, so hours studied is our independent variable and certainty is the dependent variable. 
Comparing levels of hours studied for those with high certainty, we see that there is not much 
variation. Of those who did not study very much (0–3 hours), 39.2% were high in perceived 
certainty. Of those who studied from 4 to 6 hours, 35.6% were high in perceived certainty, 
and 40.3% of those who studied more than 7 hours per week were high in perceived certainty. 

Exhibit F.15 Cross-Tabulation of Respondents’ Morals by Delinquency

Self-Reported Delinquency

Low Medium High Total

Morals

Weak 20
5.6%

79
  22.3%

256
72.1%

355
100%

Medium 170
33.8%

185
36.8%

148
29.4%

503
100%

Strong 260
62.8%

84
20.3%

70
16.9%

414
100%

Total 450 348 474 1,272

Monotonic relationship: 
A pattern of 
association in which 
the value of cases on 
one variable increases 
or decreases fairly 
regularly across the 
categories of another 
variable.
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Measure of 
association: A type of 
descriptive statistic 
that summarizes 
the strength of an 
association.

Gamma: A measure of 
association sometimes 
used in cross-tabular 
analyses.

Exhibit F.16  Cross-Tabulation of Respondents’ Hours Studied and Perceived 
Certainty of Punishment

Certainty of Punishment

Low Medium High Total

Number of 
Hours Studied

0–3 Hours 126
27.9%

148
32.8%

177
39.2%

451
100%

4–6 Hours 117
32.8%

113
31.7%

127
35.6%

357
100%

7 + Hours 129
27.8%

148
31.9%

187
40.39%

464
100%

Total 372 409 491 1,272

Much the same levels prevail at low levels of perceived certainty. Those who do not study 
very much are no more or less likely to perceive a low certainty of punishment than those 
who study a lot. Variation in the independent variable, then, is not related to variation in the 
dependent variable. It looks like there is no association between the number of hours a youth 
studies and the extent to which he or she thinks punishment for delinquent acts is certain.

You will find when you read research reports and journal articles that social scientists 
usually make decisions about the existence and strength of association on the basis of more 
statistics than just percentage differences in a cross-tabulation table. A measure of associa-
tion is a type of descriptive statistic used to summarize the strength of an association. There 
are many measures of association, some of which are appropriate for variables measured at 
particular levels. One popular measure of association in cross-tabular analyses with variables 
measured at the ordinal level is gamma. As with many measures of association, the possible 
values of gamma vary from −1, meaning the variables are perfectly associated in a negative 
direction; to 0, meaning there is no association of the type that gamma measures; to +1, mean-
ing there is a perfect positive association of the type that gamma measures.

Inferential statistics are used in deciding whether it is likely that an association exists in 
the larger population from which the sample was drawn. Even when the association between 
two variables is consistent with the researcher’s hypothesis, it is possible that the associa-
tion was just due to chance or to the vagaries of sampling on a random basis. (Of course, the 
problem is even worse if the sample is not random.) It is conventional in statistics to avoid 
concluding that an association exists in the population from which the sample was drawn 
unless the probability that the association was due to chance is less than 5%. In other words, a 
statistician normally will not conclude that an association exists between two variables unless 
he or she can be at least 95% confident that the association was not due to chance. This is the 
same type of logic that you learned about in Chapter 5, which introduced the concept of 95% 
confidence limits for the mean. Estimation of the probability that an association is not due to 
chance will be based on one of several inferential statistics, chi-square being the one used in 
most cross-tabular analyses. The probability is customarily reported in a summary form such 
as “p < .05,” which can be translated as “the probability that the association was due to chance 
is less than 5 out of 100 [5%].”

When an association passes muster in this way, when the analyst feels reasonably con-
fident (at least 95% confident) that it was not due to chance, it is said that the association is 
statistically significant. Statistical significance means that an association is not likely to be 
due to chance, according to some criterion set by the analyst. Convention (and the desire to 

Chi-square: An 
inferential statistic 
used to test hypotheses 
about relationships 
between two or more 
variables in a cross-
tabulation.

Statistical significance: 
A relationship that is 
not likely to be due 
to chance, judged by 
a criterion set by the 
analyst (often that the 
probability is less than 5 
out of 100, or p < .05).
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avoid concluding that an association exists in the population when it does not) dictates that 
the criterion be a probability less than 5%.

But statistical significance is not everything. You may remember from Chapter 5 that 
sampling error decreases as sample size increases. For this same reason, an association is less 
likely to appear on the basis of chance in a larger sample than in a smaller sample. In a table 
with more than 1,000 cases, such as those involving the delinquency data-set, the odds of a 
chance association are often very low indeed. For example, with our table based on 1,272 
cases, the probability that the association between gender and delinquency (see Exhibit F.14) 
was due to chance was less than 1 in 1,000 (p < .001)! The association in that table was fairly 
weak, as indicated by a gamma of .20. Even weak associations can be statistically significant 
with such a large sample, which means that the analyst must be careful not to assume that 
just because a statistically significant association exists, it is therefore important. In a large 
sample, an association may be statistically significant but still be too weak to be substantively 
significant or important. All this boils down to another reason for evaluating carefully both 
the existence and the strength of an association.

Controlling for a Third Variable

Cross-tabulation can also be used to study the relationship between two variables while con-
trolling for other variables. We will focus our attention on controlling for a third variable 
in this section, but we will say a bit about controlling for more variables at the section’s 
end. We will examine three different uses for three-variable cross-tabulation: identifying an 
intervening variable, testing a relationship for spuriousness, and specifying the conditions for 
a relationship. Each of these uses for three-variable cross-tabs helps determine the validity 
of our findings, either by evaluating criteria for causality (nonspuriousness and identification 
of a causal mechanism) or by increasing our understanding of the conditions required for a 
relationship to hold, an indication of the cross-population generalizability of the findings. 
All three uses are aspects of elaboration analysis—the process of introducing control vari-
ables into a bivariate relationship in order to better understand—to elaborate the relationship 
(Rosenberg, 1968). We will examine the gamma and chi-square statistics for each table in this 
analysis.

Intervening Variables

We have already discovered that females are less likely to be delinquent than males (see 
Exhibit F.14). Finding this relationship between gender and delinquency is just the beginning 
of our work, however. What we would now like to know and investigate is why this relation-
ship exists. What is it about females that makes them less likely to commit delinquent acts 
than males? Let us first rule out strictly biological factors and explore some possible social 
reasons for this gender difference in delinquency. One possibility is that because they are 
more closely supervised than males, females have fewer opportunities to be delinquent. In 
other words, females are under more strict parental supervision, and it is because they are 
under more strict supervision that they are less likely than males to commit delinquency. This 
possible relationship is shown in Exhibit F.17. Notice that in this relationship the variable 
“parental supervision” intervenes between gender and delinquency. It explains why females 
are at lower risk for delinquency compared to males. To determine whether parental supervi-
sion intervenes in the relationship between gender and delinquency and whether it explains 
this relationship, we must examine the relationship between gender and delinquency while 
controlling for difference in parental supervision. If parental supervision intervenes in the 
gender-delinquency relationship, the effect of controlling for this third variable would be 
to eliminate, or at least substantially reduce, the original relationship between gender and 
delinquency.

Elaboration analysis: 
The process of 
introducing a third 
variable into an 
analysis in order to 
better understand—to 
elaborate—the 
bivariate (two-
variable) relationship 
under consideration; 
additional control 
variables also can be 
introduced.
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Exhibit F.17  Cross-Tabulation of Respondents’ Gender by Delinquency 
Within Levels of Parental Supervision

Weak Parental Supervision

Self-Reported Delinquency

Gender Low Medium High Total

Female 26.1% 27.9% 46.0% 337

Male 23.2% 27.2% 49.6% 427

Total 764

χ2 = 1,220 (p > .05), Gamma = .067

Strong Parental Supervision

Self-Reported Delinquency

Gender Low Medium High Total

Female 54.4% 25.7% 19.8% 343

Male 46.1% 30.3% 23.6% 165

Total 508

χ2 = 3,193 (p > .05), Gamma = .136

To examine this possibility, we first recode the parental supervision variable (PARSU-
PER; see Exhibit F.2) into two approximately equal levels: weak supervision and strong super-
vision. We then look at two subtables of the gender-delinquency relationship: once under 
the condition of weak parental supervision and once under the condition of strong parental 
supervision (see Exhibit F.17). For ease of presentation, we will report only the cell percent-
ages and not the frequencies. What we see is that once parental supervision is controlled, 
there is no real relationship between gender and delinquency. That is, if males and females 
have the same amount of supervision from their parents, they do not differ that much in their 
risk of being delinquent. For example, among females with weak parental supervision, 46.0% 
are high in delinquency, and among males with weak parental supervision, 49.6% are high in 
delinquency. There is less than four percentage points’ difference between males and females 
in their risk of being high delinquents under these conditions. Among those with strong 
parental supervision, 19.8% of the females were high in delinquency and 23.6% of the males 
were high, less than four percentage points’ difference.

This percentage analysis is borne out by the chi-square tests and measures of association. 
Under both the weak and strong levels of parental supervision, the relationship between gen-
der and delinquency is not significant, and gamma is only .067 when supervision is weak and 
.136 when supervision is strong. In neither case is the obtained gamma very different from 
zero (indicating no relationship). Collectively, these results would lead us to the conclusion 
that parental supervision intervenes in the relationship between gender and delinquency. A 
very important reason females are less delinquent than males, therefore, is that females are 
under stricter supervision from their parents than are males, and strong parental supervision 
leads to a reduced risk of delinquency.

Subtables: Tables 
describing the 
relationship between 
two variables within 
the discrete categories 
of one or more other 
control variables.
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Extraneous Variables

Another reason for introducing a third variable into a bivariate relationship is to see whether 
the original relationship is spurious due to the influence of an extraneous variable, which 
is a variable that causes both the independent and dependent variables. The only reason the 
independent and dependent variables are related, therefore, is that they both are the effects of 
a common cause (another independent variable).

Exhibit F.18 shows what a spurious relationship would look like. In this case, the rela-
tionship between x and y exists only because both are the effects of the common cause z. 
Controlling for z, therefore, will eliminate the x-y relationship. Ruling out possible extrane-
ous variables will help considerably strengthen the conclusion that the relationship between 
the independent and dependent variables is causal, particularly if all the variables that seem to 
have the potential for creating a spurious relationship can be controlled.

Notice that if a variable is acting as an extraneous vari-
able, then controlling for it will cause the original relation-
ship between the independent and dependent variables 
to disappear or substantially diminish. This was also the 
empirical test for an intervening variable. Therefore, the 
difference between intervening and extraneous variables is 
a logical one and not an empirical one. In both instances, 
controlling for the third variable will cause the original rela-
tionship to diminish or disappear. There should, therefore, 
be sound theoretical grounds for suspecting that a variable 
is acting as an intervening variable, explaining the relation-
ship between the independent and dependent variables.

As an example of a possible extraneous relationship, we will look at the association 
between a youth’s perception of the certainty of punishment and self-reported involve-
ment in delinquency. Deterrence theory should lead us to predict a negative relation-
ship between perceived certainty and delinquency. Indeed, this is exactly what we observe 
in our delinquency data. We will not show you the cross-tabulation table, but when we 
looked at the relationship between perceived certainty and delinquency, we found that 
53.2% of youth who were low in certainty were high in delinquency; 39.1% of those who 
perceived medium certainty were high in delinquency; and only 23.6% of those who per-
ceived a high certainty of punishment were high in delinquency. Youth who believed they 
would get caught if they engaged in delinquency, then, were less likely to be delinquent. 
The gamma value for this table was −.382, indicating a moderate negative relationship 
between perceived certainty and delinquency, exactly what deterrence theory would lead 
us to expect.

Someone may reasonably argue, however, that this discovered negative relationship may 
not be causal but instead may be spurious. It could be suggested that what is actually behind 
this relationship is the extraneous variable, moral beliefs. The argument is that those with 
strong moral inhibitions against committing delinquent acts 
think that punishment for morally wrongful actions is cer-
tain and refrain from delinquent acts. Thus, the observed 
negative relationship between perceived certainty and delin-
quency is really due to the positive effect of moral beliefs on 
perceived certainty and the negative effect of moral beliefs 
on delinquency (see Exhibit F.19). If moral beliefs are actu-
ally the causal factor at work, then controlling for them will 
eliminate or substantially reduce the original relationship 
between perceived certainty and delinquency.

Exhibit F.18  Example of a Spurious 
Relationship

Original relationship between
x and y disappearsz

x

y

Extraneous variable: 
A variable that 
influences both the 
independent and 
dependent variables so 
as to create a spurious 
association between 
them that disappears 
when the extraneous 
variable is controlled.

Exhibit F.19  A Spurious Relationship 
Between x and y

Moral beliefs

Perceived certainty

Delinquency
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To look at this possibility, we examined the relationship between perceived certainty and 
delinquency under three levels of moral beliefs (weak, medium, and strong). The crosstabula-
tions are shown in Exhibit F.20. What we can see is that in each of the subtables there is a nega-
tive and significant association between the perceived certainty of punishment and delinquency. 
In two of the three subtables, however, the relationship is weaker than what was in the original 
table (there the gamma was −.382); we obtained gammas of −.271 and −.197. Under the condi-
tion of strong moral beliefs, however, the original relationship is unchanged. What we would 
conclude from this elaboration analysis is that the variable “moral beliefs” is not acting as a very 
strong extraneous variable. Although some of the relationship between perceived risk and delin-
quency is due to their joint relationship with moral beliefs, we cannot dismiss the possibility that 
the perceived certainty of punishment has a causal influence on delinquent behavior.

Exhibit F.20 Cross-Tabulation of Perceived Risk by Delinquency Within Levels of Moral Beliefs

Weak Moral Beliefs

Self-Reported Delinquency

Low Medium High Total

Perceived Certainty

Low 3.8% 14.7% 81.4% 156

Medium 8.6% 27.3% 64.1% 128

High 4.2% 29.6% 66.8%  71

Total 355

χ2 = 13.646 (p<.O01), Gamma = −.271

Medium Moral Beliefs

Self-Reported Delinquency

Low Medium High Total

Perceived Certainty

Low 22.0% 42.5% 35.4% 127

Medium 33.9% 35.6% 30.5% 174

High 41.1% 34.2% 24.8% 202

Total 503

χ2 = 13.646 (p<.001), Gamma = −.197

Strong Moral Beliefs

Self-Reported Delinquency

Low Medium High Total

Perceived Certainty

Low 42.7% 28.1% 29.2% 89

Medium 58.9% 17.7% 23.4% 107

High 72.9% 18.3%  8.7% 218

Total 414

χ2 = 13.646 (p<.001), Gamma = −.393
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Specification

By adding a third variable to an evaluation of a bivariate relationship, the data analyst can 
also specify the conditions under which the bivariate relationship occurs. A specification 
occurs when the association between the independent and dependent variables varies across 
the categories of one or more other control variables—that is, when the original relationship 
is stronger under some condition or conditions of a third variable and weaker under others.

In criminology, social learning theory would predict that youths who are exposed to 
peers who provide verbal support for delinquency are at greater risk for their own delinquent 
conduct. We found support for this hypothesis in our delinquency dataset. We examined this 
relationship by recoding into two approximately equal groups the variable FROPINON (see 
Exhibit F.2). The first group had weak verbal support from peers, whereas the second group 
had strong verbal support. Among those youths who reported that their peers provided only 
weak verbal support for delinquency, 15% were highly delinquent. Among those with strong 
verbal support from peers, nearly 58% were highly delinquent. The gamma value for this rela-
tionship was .711, a very strong positive relationship. Clearly, then, having friends give you 
verbal support for delinquent acts (e.g., “it’s okay to steal”) puts you at risk for delinquency.

It is entirely possible, however, that this relationship exists only when friends’ verbal 
support is backed up by their own behavior. That is, verbal support from our peers might not 
affect our delinquency when they do not themselves commit delinquent acts or when they 
commit only a very few. In this case, their actions (inaction in this case) speak louder than 
their words, and their verbal support does not influence us. When they also commit delin-
quent acts, however, the verbal support of peers carries great weight.

We looked at this possibility to examine the relationship between friends’ verbal support for 
delinquency and a youth’s own delinquency within two levels of friends’ behavior (FRBEHAVE; 
see Exhibit F.2). We recoded FRBEHAVE into two approximately equal groups. In the first group, 

Specification:  
A type of relationship 
involving three or more 
variables in which the 
association between 
the independent and 
dependent variables 
varies across the 
categories of one or 
more other control 
variables.

Exhibit F.21  Cross-Tabulation of Friends’ Verbal Support by Delinquency Within Levels of Friends’ 
Delinquent Behavior

Few Delinquent Friends

Self-Reported Delinquency

Low Medium High Total

Friends’ Verbal Support

Weak 67.3% 23.8%  8.9% 437

Strong 44.3% 34.3% 21.4% 140

Total 577

χ2 = 27.374 (p>.001), Gamma = .416

Many Delinquent Friends

Self-Reported Delinquency

Low Medium High Total

Perceived Certainty

Weak 30.5% 38.5% 31.0% 174

Strong  7.5% 24.8% 67.4% 521

Total 695

χ2 = 87.508 (p>.001), Gamma = .608
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fewer of one’s friends are delinquent (few delinquent friends) than the other (many delinquent 
friends). This attempt to specify the relationship between friends’ opinions and a youth’s own 
delinquency is shown in Exhibit F.21. What we see is a little complex. When only a few of a youth’s 
friends are committing delinquent acts, their verbal support still has a significant and positive 
effect on self-reported delinquency. The gamma value in this subtable is .416, which is moderately 
strong but less than the original gamma of .771. When many of a youth’s friends are delinquent, 
however, the positive relationship between peers’ verbal support and self-reported delinquency is 
much stronger, with a gamma of .608. The behavior of our peers, then, only weakly specifies the 
relationship between peer opinion and delinquency. Clearly, then, what our peers say about delin-
quency matters, even if they are not committing delinquent acts all the time themselves.

REGRESSION AND CORRELATION

Our goal in introducing you to cross-tabulation has been to help you think about the associa-
tions among variables and to give you a relatively easy tool for describing association. To read 
most statistical reports and to conduct more sophisticated analyses of social data, you will have to 
extend your statistical knowledge. Many statistical reports and articles published in the social sci-
ences use statistical techniques called regression analysis and correlation analysis to describe 
the associations among two or more quantitative variables. The terms actually refer to different 
aspects of the same technique. Statistics based on regression and correlation are used frequently 
in social science and have many advantages over cross-tabulation—as well as some disadvantages.

We provide only a brief overview of this approach here. Take a look at Exhibit F.22. 
It’s a plot, termed a scatterplot, of the bivariate relationship between two interval/ratio-level 
variables. The variables were obtained from a U.S. state-level dataset. The dependent vari-
able, presented on the y-axis (vertical) is the murder rate per 100,000 population, and the 
independent variable, presented on the x-axis (horizontal), is the poverty rate (percentage of 
each state’s population living under the poverty level).

You can see that the data points in the scatterplot tend to run from the lower left to the 
upper right of the chart, indicating a positive relationship. States with higher levels of poverty 
also tend to have higher rates of murder. This regression line is the “best fitting” straight line 
for this relationship—it is the line that lies closest to all the points in the chart, according to cer-
tain criteria. But you can easily see that quite a few points are pretty far from the regression line.

How well does the regression line fit the points? In other words, how close does the 
regression line come to the points? (Actually, it’s the square of the vertical distance, on the 
y-axis, between the points and the regression line that is used as the criterion.) The correla-
tion coefficient, also called Pearson’s r, or just r, gives one answer to that question. The value 
of r for this relationship is .60, which indicates a moderately strong positive linear relation-
ship (if it were a negative relationship, r would have a negative sign). The value of r is 0 when 
there is absolutely no linear relationship between the two variables, and it is 1 when all the 
points representing all the cases lie exactly on the regression line (which would mean that the 
regression line describes the relationship perfectly).

So the correlation coefficient does for two interval/ratio-level variables what gamma 
does for a cross-tabulation table: It is a summary statistic that tells us about the strength of 
the association between the two variables. Values of r close to 0 indicate that the relationship 
is weak; values of r close to ±1 indicate the relationship is strong—in between there is a lot 
of room for judgment. You will learn in a statistics course that r2 is often used instead of r. 
Exhibit F.23 provides an overview of how to interpret the values of r. Although not all possible 
values of r are displayed in Exhibit F.23, it highlights how the use of adjectives can describe 
various values between 0 and 1.

Correlation coefficient 
(r): A summary statistic 
that varies from 0 to 1 
or −1, with 0 indicating 
the absence of a linear 
relationship between 
two quantitative 
variables and 1 or 
−1 indicating that 
the relationship is 
completely described 
by the line representing 
the regression of the 
dependent variable 
on the independent 
variable.

Regression analysis: A 
statistical technique 
for characterizing 
the pattern of a 
relationship between 
two quantitative 
variables in terms 
of a linear equation 
and for summarizing 
the strength of this 
relationship.

Correlation analysis: 
A standardized 
statistical technique 
that summarizes 
the strength of a 
relationship between 
two quantitative 
variables in terms 
of its adherence to a 
linear pattern.



 appendix F • Quantitative data analysis   35

Exhibit F.22  Example of a Positive Relationship. Scatterplot of Murder Rate 
(dependent variable) and Poverty Rate (independent variable) in 
U.S. States, 2010.
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Exhibit F.23 A Guide to Interpreting Strong to Weak Relationships
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Source: Frankfort-Nachmais and Leon-Guerrero (2006:230). Reprinted with permission from SAGE 
Publications, Inc.

An example of a negative relationship is shown in Exhibit F.24, where we provide a scat-
terplot of the robbery rate in states (dependent variable) on the y-axis and the percentage of 
each state’s population that resides in rural areas as the independent variable (x-axis). You can 
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Exhibit F.24  Example of a Negative Relationship. Scatterplot of Robbery 
Rate (dependent variable) and Percentage Rural (independent 
variable) in U.S. States, 2010.
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see here a clear negative relationship; a state that has a higher percentage of its population 
residing in rural areas will tend to have lower robbery rates. The correlation coefficient for 
this relationship is r = −.53, indicating a moderate negative relationship.

You can also use correlation coefficients and regression analysis to study simultaneously 
the association among three or more variables. Let’s use the murder rate as the dependent 
variable to illustrate. In a multiple regression analysis, you could test to see whether several 
other variables in addition to poverty are associated simultaneously with the murder rate—
that is, whether the variables have independent effects on murder after statistically control-
ling for each other.

Controlling for the geography in a state is also important for predicting murder rates, so 
we will be including percentage rural in our equation. We also know that robberies sometimes 
have lethal outcomes, so controlling for the robbery rate is also important. Let’s examine what 
a multiple regression equation would look like predicting the murder rate using the poverty 
rate, the percentage rural, and the robbery rate as the three independent variables. Interpret-
ing regression output is way beyond the scope of this text; we are simply going to examine the 
standardized regression coefficients, called betas, and their significance level for this illustra-
tion. Results are displayed in Exhibit F.25.

First, look at the numbers under the Beta Coefficient heading. Beta coefficients are  
standardized statistics that indicate how strong the linear relationship is between the depen-
dent variable (murder rate, in this case) and each independent variable, while the other inde-
pendent variables are controlled. Like the correlation coefficient (r), values of beta range 
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from 0, when there is no linear association, to ±1.0, when the association falls exactly on a 
straight line. You can see in the beta column that rural population is not significantly related 
to the murder rate when the other variables are controlled. Both the percentage poor and the 
robbery rate, however, are still significant predictors of murder. R2 (r-squared) is a model fit 
statistic and tells us, when multiplied by 100, the percentage of the dependent variable’s varia-
tion that is explained by all the independent variables in the model. In this model, we learn 
from R2 that the three independent variables together explain, or account for, 68% of the total 
variation in murder rates. Our goal is to explain as much variation as possible of the 100%, so 
explaining over two-thirds of the variation is not bad!

You will need to learn more about when correlation coefficients and regression analysis 
are appropriate (e.g., both variables have to be quantitative, and the relationship has to be 
linear [not curvilinear]), but that’s for another time and place. To learn more about correlation 
coefficients and regression analysis, you should take an entire statistics course. For now, this 
short introduction will enable you to make sense of more of the statistical analyses you find 
in research articles. You can also learn more about these techniques with the tutorials on the 
text’s study site.

ANALYZING DATA ETHICALLY:  
HOW NOT TO LIE ABOUT RELATIONSHIPS

When the data analyst begins to examine relationships among variables in some real data, 
social science research becomes most exciting. The moment of truth, it would seem, has 
arrived. Either the hypotheses are supported or not. But, in fact, this is also a time to proceed 
with caution and to evaluate the analyses of others with even more caution. Once large datasets  
are entered into a computer, it becomes very easy to check out a great many relationships; 
when relationships are examined among three or more variables at a time, the possibilities 
become almost endless.

This range of possibilities presents a great hazard for data analysis. It becomes very 
tempting to search around in the data until something interesting emerges. Rejected 
hypotheses are forgotten in favor of highlighting what’s going on in the data. It is not 
wrong to examine data for unanticipated relationships; the problem is that inevitably some 
relationships between variables will appear just on the basis of chance association alone. If 

Exhibit F.25  Multiple Regression Predicting the Murder Rate in States Using 
Poverty, the Divorce Rate, and the Robbery Rate as Independent 
Variables

Variable Beta Coefficient Significance Level

Percentage poor .462 P = 001

Percentage rural −.001 p = 382

Robbery rate .630 p = 001

R2 .68

N 50
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Dana Hunt, PhD, Principal Scientist

In the study site video 
for this chapter, Dana 
Hunt discusses two of 
the many lessons she has 
learned about measure-
ment in a decades-long 
career in social research. 
Hunt received her BA in 

sociology from Hood College in Pennsylvania and 
then earned her PhD in sociology at the University 
of Pennsylvania. After teaching at Hood for sev-
eral years, she took an applied research position 
at National Development and Research Institutes 
(NDRI) in New York City. NDRI’s description on its 
website gives you an idea of what drew the attention 
of a talented young social scientist.

Founded in 1967, NDRI is a nonprofit research 
and educational organization dedicated to advanc-
ing scientific knowledge in the areas of drug and 
alcohol abuse, treatment, and recovery; HIV, AIDS, 
and HCV (hepatitis C virus); therapeutic communi-
ties; youth at risk; and related areas of public health, 

mental health, criminal justice, urban problems, pre-
vention, and epidemiology.

Hunt moved from New York to the Boston area 
in 1990, where she is now a principal scientist at Abt 
Associates, Inc., in Cambridge. Abt’s website descrip-
tion conveys the scope of the research projects the 
company directs.

Abt Associates applies scientific research, con-
sulting, and technical assistance expertise on a wide 
range of issues in social, economic, and health pol-
icy; international development; clinical trials; and 
registries. One of the largest for-profit government 
and business research and consulting firms in the 
world, Abt Associates delivers practical, measurable, 
high-value-added results.

Two of Hunt’s major research projects in recent 
years are the nationwide Arrestee Drug Abuse 
Monitoring Program for the Office of National Drug 
Control Policy and a study of prostitution and sex 
trafficking demand reduction for the National Insti-
tute of Justice.
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you search hard and long enough, it will be possible to come up with something that really 
means nothing.

A reasonable balance must be struck between deductive data analysis to test hypotheses 
and inductive analysis to explore patterns in a dataset. Hypotheses formulated in advance of 
data collection must be tested as they were originally stated; any further analyses of these 
hypotheses that involve a more exploratory strategy must be labeled as such in research 
reports. Serendipitous findings do not need to be ignored, but it must be reported that they 
were serendipitous. Subsequent researchers can try to deductively test the ideas generated by 
our explorations.

We also have to be honest about the limitations of using survey data to test causal hypoth-
eses. The usual practice for those who seek to test a causal hypothesis with nonexperimental 
survey data is to test for the relationship between the independent and dependent variables, 
controlling for other variables that might possibly create spurious relationships. This is what 
we did by examining the relationship between the perceived certainty of punishment and 
delinquency while controlling for moral beliefs. But finding that a hypothesized relationship 
is not altered by controlling for just one variable does not establish that the relationship is 
causal, nor does controlling for two, three, or many more variables. There always is a possibil-
ity that some other variable that we did not think to control, or that was not even measured 
in the survey, has produced a spurious relationship between the independent and dependent 
variables in our hypothesis (Lieberson, 1985). We must always think about the possibilities 
and be cautious in our causal conclusions.
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CONCLUSION

This appendix has demonstrated how a researcher can 
describe phenomena in criminal justice and criminology, 
identify relationships among them, explore the reasons 
for these relationships, and test hypotheses about them. 
Statistics provide a remarkably useful tool for developing 
our understanding of the social world, a tool that we can use 
to test our ideas and generate new ones.

Unfortunately, to the uninitiated, the use of sta-
tistics can seem to end debate right there; you cannot 
argue with the numbers. But you now know better than 

that. The numbers will be worthless if the methods used 
to generate the data are not valid, and the numbers will 
be misleading if they are not used appropriately, taking 
into account the type of data to which they are applied. 
And even assuming valid methods and proper use of sta-
tistics, there is one more critical step, for the numbers 
do not speak for themselves. Ultimately, it is how we 
interpret and report the numbers that determines their 
usefulness. 

GLOSSARY

Bar chart: A graphic for qualitative variables in which the 
variable’s distribution is displayed with solid bars separated 
by spaces.

Base N: The total number of cases in a distribution.

Bimodal distribution: A distribution that has two nonad-
jacent categories with about the same number of cases, and 
these categories have more cases than any other categories.

Central tendency: A feature of a variable’s distribution; 
refers to the value or values around which cases tend to  
center.

Chi-square: An inferential statistic used to test hypoth-
eses about relationships between two or more variables in 
a cross-tabulation.

Correlation analysis: A standardized statistical technique 
that summarizes the strength of a relationship between two 
quantitative variables in terms of its adherence to a linear 
pattern.

Correlation coefficient (r): A summary statistic that varies 
from 0 to 1 or −1, with 0 indicating the absence of a linear 
relationship between two quantitative variables and 1 or −1 
indicating that the relationship is completely described by 
the line representing the regression of the dependent vari-
able on the independent variable.

Cross-tabulation (cross-tab): A bivariate (two-variable) 
distribution showing the distribution of one variable for 
each category of another variable.

Data cleaning: The process of checking data for errors 
after the data have been entered in a computer file.

Descriptive statistics: Statistics used to describe the distri-
bution of and relationship among variables.

Elaboration analysis: The process of introducing a third 
variable into an analysis in order to better understand— 
to elaborate—the bivariate (two-variable) relationship 
under consideration; additional control variables also can 
be introduced.

Extraneous variable: A variable that influences both the 
independent and dependent variables so as to create a spu-
rious association between them that disappears when the 
extraneous variable is controlled.

Frequency distributions: Numerical display showing the 
number of cases, and usually the percentage of cases (the 
relative frequencies), corresponding to each value or group 
of values of a variable.

Gamma: A measure of association sometimes used in cross-
tabular analyses.

Grouped frequency distribution: A frequency distribu-
tion in which the data are organized into categories, either 
because there are more values than can be easily displayed 
or because the distribution of the variable will be clearer or 
more meaningful.

Histogram: A graphic for quantitative variables in which 
the variable’s distribution is displayed with adjacent bars.

Inferential statistics: Mathematical tools for estimating 
how likely it is that a statistical result based on data from 
a random sample is representative of the population from 
which the sample is assumed to have been selected.
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Interquartile range: The range in a distribution between 
the end of the first quartile and the beginning of the third 
quartile.

Marginal distributions: The summary distributions in the 
margins of a cross-tabulation that correspond to the fre-
quency distribution of the row variable and of the column 
variable.

Mean: The arithmetic or weighted average, computed by 
adding up the value of all the cases and dividing by the total 
number of cases.

Measure of association: A type of descriptive statistic that 
summarizes the strength of an association.

Median: The position average, or the point that divides a 
distribution in half (the 50th percentile).

Mode: The most frequent value in a distribution, also termed  
the probability average.

Monotonic relationship: A pattern of association in which 
the value of cases on one variable increases or decreases 
fairly regularly across the categories of another variable.

Negatively skewed: A distribution in which cases cluster 
to the right side and the left tail of the distribution is longer 
than the right.

Outlier: An exceptionally high or low value in a distribution.

Percentage: Relative frequencies, computed by dividing 
the frequency of cases in a particular category by the total 
number of cases and multiplying by 100.

Positively skewed: Describes a distribution in which the 
cases cluster to the left and the right tail of the distribution 
is longer than the left.

Quartiles: The points in a distribution corresponding to the 
first 25% of the cases, the first 50% of the cases, and the top 
25% of the cases.

Range: The true upper limit in a distribution minus the true 
lower limit (or the highest rounded value minus the lowest 
rounded value, plus one).

Regression analysis: A statistical technique for character-
izing the pattern of a relationship between two quantitative 
variables in terms of a linear equation and for summarizing 
the strength of this relationship.

Skewness: A feature of a variable’s distribution; refers to 
the extent to which cases are clustered more at one or the 
other end of the distribution rather than around the middle.

Specification: A type of relationship involving three or 
more variables in which the association between the inde-
pendent and dependent variables varies across the catego-
ries of one or more other control variables.

Standard deviation: The square root of the average squared 
deviation of each case from the mean.

Statistical significance: An association that is not likely 
to be due to chance, judged by a criterion set by the ana-
lyst (often that the probability is less than 5 out of 100 or  
p < .05).

Subtables: Tables describing the relationship between two 
variables within the discrete categories of one or more other 
control variables.

Unimodal distribution: A distribution of a variable in which 
there is only one value that is the most frequent.

Variability: A feature of a variable’s distribution, referring 
to the extent to which cases are spread out through the dis-
tribution or clustered in only one location.

Variance: A statistic that measures the variability of a distri-
bution as the average squared deviation of each score from 
the mean of all scores.

HIGHLIGHTS

• Data collection instruments should be precoded for 
direct entry, after verification, into a computer. All data 
should be cleaned during the data entry process.

• Use of secondary data can save considerable time and 
resources but may limit data analysis possibilities.

• Bar charts, histograms, and frequency polygons are 
useful for describing the shape of distributions. Care 

must be taken with graphic displays to avoid distorting 
a distribution’s apparent shape.

• Frequency distributions display variation in a form that 
can be easily inspected and described. Values should 
be grouped in frequency distributions in a way that 
does not alter the shape of the distribution. Following 
several guidelines can reduce the risk of problems.
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• Summary statistics are often used to describe the 
central tendency and variability of distributions. 
The appropriateness of using the mode, mean, and 
median for a description varies with a variable’s level of 
measurement, the distribution’s shape, and the purpose 
of the summary.

• The variance and standard deviation summarize 
variability around the mean. The interquartile  
range is usually preferable to the range to indicate the 
interval spanned by cases, due to the effect of outliers 
on the range. The degree of skewness of a distribution 
is usually described in words rather than with a 
summary statistic.

• Cross-tabulations should normally be divided into 
percentages within the categories of the independent 
variable. A cross-tabulation can be used to determine 
the existence, strength, direction, and pattern of an 
association.

• Elaboration analysis can be used in cross-tabular 
analysis to test for spurious and intervening 
relationships and to identify the conditions under 
which relationships occur.

• Inferential statistics are used with sample-based  
data to estimate the confidence that can be  
placed in a statistical estimate of a population 
parameter. Estimates of the probability that an 
association between variables may have occurred 
on the basis of chance are also based on inferential 
statistics.

• Regression analysis is a statistical method for 
characterizing the relationship between two or  
more quantitative variables with a linear equation 
and for summarizing the extent to which the linear 
equation represents that relationship. Correlation 
coefficients summarize the fit of the relationship  
to the regression line.

EXERCISES  

1. Create frequency distributions from lists  
in the Federal Bureau of Investigation (FBI)  
Uniform Crime Reports on characteristics of  
arrestees in at least 100 cases (cites). You will have 
to decide on grouping schemes for the distribution 
of data for variables such as race, age, and crime 
committed, and how to deal with outliers in the 
frequency distribution.

a. Decide what summary statistics to use for 
each variable of interest. How well were the 
features of each distribution represented by the 
summary statistics? Describe the shape of each 
distribution.

b. Propose a hypothesis involving two  
of these variables, and develop a cross- 
tabulation to evaluate the support for this 
hypothesis.

c. Describe each relationship in terms  
of the four aspects of an association, after  
making percentages within each table  
within the categories of the independent  
variable. Which hypotheses appear to have  
been supported?

2. Become a media critic. For the next week, scan a 
newspaper or some magazines for statistics related to 

crime or criminal victimization. How many can you 
find using frequency distributions, graphs,  
and the summary statistics introduced in this  
chapter? Are these statistics used appropriately and 
interpreted correctly? Would any other statistics 
have been preferable or useful in addition to those 
presented?

3. The table that follows shows a frequency  
distribution of “trust in people” as produced by 
SPSS with the General Social Survey data. As you 
can see, the table includes abbreviated labels for the 
variable and its response choices, as well as the raw 
frequencies and three percentage columns.  
The first percentage column (Percentage) shows the 
percentage in each category; the next percentage 
column (Valid Percentage) is based on the total 
number of respondents who gave valid answers  
(3,929 in this instance). It is the Valid Percentage 
column that normally should be used to  
construct a frequency distribution for presentation. 
The last percentage column is Cumulative 
Percentage, adding up the valid percentages  
from top to bottom.

Redo the table for presentation, using the format of the 
frequency distributions presented in the text.
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Frequency Percentage Valid Percentage
Cumulative 
Percentage

Valid CAN TRUST 1279 28.4

CANNOT TRUST 2458 54.5

DEPENDS  192  4.3

Total 3929 87.1

Frequency Percentage

Missing NAP  575 12.7

NA   6 .1

Total  581 12.9

Total 4510 100.0

DEVELOPING A RESEARCH PROPOSAL 

Use the General Social Survey data to add a pilot study to 
your proposal. A pilot study is a preliminary effort to test 
out the procedures and concepts that you have proposed to 
research.

1. Review the GSSCRJ2K variable list, and identify some 
variables that have at least some connection to your 
research problem. If possible, identify one variable 
that might be treated as independent in your proposed 
research and one that might be treated as dependent.

2. Request frequencies for these variables.

3. Request a cross-tabulation of the dependent variable by 
the independent variable (if you were able to identify 
any). If necessary, recode the independent variable to 
three or fewer categories.

4. Write a brief description of your findings and 
comment on their implications for your proposed 
research. Did you learn any lessons from this exercise 
for your proposal?

WEB EXERCISES 

1. Search the web for a crime-related example of 
statistics. The Bureau of Justice Statistics is a good 
place to start: www.ojp.usdoj.gov/bjs/. Using the key 
terms from this chapter, describe the set of statistics 
you have identified. What phenomena does this set of 
statistics describe? What relationships, if any, do the 
statistics identify?

2. Do a web search for information on a criminological 
subject that interests you. How much of the 
information that you find relies on statistics as a tool 
for understanding the subject? How do statistics allow 
researchers to test their ideas about the subject and 
generate new ideas? Write your findings in a brief 
report, referring to the websites that you found.

ETHICS EXERCISES 

1. Review the frequency distributions and graphs in this 
chapter. Change one of these data displays so that you 
are “lying with statistics.”

2. Consider the relationship between gender and 
delinquency that is presented in Exhibit F.13. What 
third variable do you think should be controlled in 
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the analysis to better understand the basis for this 
relationship? How might criminal justice policies be 
affected by finding out that this relationship was due 

to differences in teacher expectations rather than to 
genetic differences in violence propensity?

SPSS OR EXCEL EXERCISES 

Data for Exercise

Dataset Description

Youth.sav This dataset is from a random sample of students from schools in a southern state. While not 
representative of the United States, it covers a variety of important delinquent behaviors and peer 
influences.

Variables for Exercise

Variable Name Description

delinquency An interval/level variable that measures self-reported delinquency.

D1 A binary variable based on the number of delinquent acts a respondent reported. A 0 indicates 
that the respondent reported 1 or fewer acts, while 1 indicates 2 or more.

Variables for Exercise

Variable Name Description

lowcertain_bin Binary indicator for whether the respondent felt there was certainty that he or she would be 
punished for delinquent behaviors, where 1 = low certainty and 0 = high certainty.

certain A scale indicating how likely the individual feels it is that he or she will be punished for delinquent 
behavior. High values indicate high certainty.

1. For this exercise let’s take a look at whether a person’s 
expectation of punishment after Delinquency is 
associated with the number of deviant behaviors 
a student engages in, as measured by the variable 
Delinquency.

a. Run a frequency of the dependent  
variable, delinquency, and answer the following 
questions:

  i. What level of measurement is this  
item?

 ii. What forms of descriptive analysis are 
appropriate?

iii. How would you best represent this data in a 
graph?

b. Based on your responses to Part 1a, conduct 
all appropriate descriptive analyses. Be sure 
to describe what you can about the data’s 

distribution and what measures of central 
tendency are most appropriate. If one or another 
measure may produce misleading results, be sure 
to caution the reader why.

2. D1 measures delinquency differently than the interval/
ratio level variable called Delinquency. Is the variable 
D1 appropriate for use in an ordinary least squares 
(OLS) regression analysis? Why or why not? If you 
have been taught them, consider how it will or will not 
meet different assumptions of OLS.

3. Repeat Part 1 for the independent variable, which is 
called lowcertain_bin. Again, describe the variable and 
how you would go about presenting it. Remember that 
you are required to conduct only the analyses that are 
appropriate.

4. On to the actual analysis! First, let’s compare mean 
delinquency scores for lowcertain_bin and the 
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delinquency variable. This can be done under  
analyze->means->compare means.

a. What is the difference between the two group 
means?

b. What do these results suggest substantively?

5. Second, let’s estimate a linear regression 
model. This can be accessed by selecting 
analyze->regression->linear.

a. What are your results? How do they compare 
with your results in Part 4?

b. Do you notice any similarities between your 
regression coefficient and the results from Part 4? 
Think carefully about why this is the case—would 
this similarity apply to all independent variables 
in a regression model or just binary ones?

c. Test your answer to Part 5b by running the 
regression model again, but this time use the 
continuous version of lowcertain_bin, named 
“certain.” High values on this measure indicate 
high levels of certainty, which is the inverse of 
the original measure.

 i. How have your results changed?

ii. Do these results lead to substantively similar 
conclusions?

6. Return to your answer for Part 2. How sound do you 
think these specific analyses are, given that they are all 
based on the analysis of means? If you think they may 
be biased, explain how they are biased and any ideas 
you might have for overcoming them.


