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An improved quantitative science would em­
phasize the use of confidence intervals (CIs), 
and especially CIs for effect sizes. This article 
reviews some definitions and issues related 
to developing these intervals. Confidence in­
tervals for effect sizes are especially valuable 
because they facilitate meta-analytic thinking 
and the interpretation of intervals via com­
parison with the effect intervals from related 
prior studies. Several recommendations for 
the thoughtful use of such CIs are presented. 

Recent annual meetings of the American 
Educational Research Association (e.g., the 
1998 and 1999 “Royal Rumbles” spon­
sored by the Educational Statisticians 
special interest group), the American Psy­
chological Society, and the American 
Psychological Association (APA) featured 
formal debates between distinguished 
scholars over whether statistical signifi­
cance tests should or should not be banned 
from journal articles (cf. Hunter, 1997). In 
1996, following almost 2 years of delibera­
tions, the APA Board of Scientific Affairs 
appointed its Task Force on Statistical In­
ference to make recommendations regard­
ing a possible ban. In 1999 the Task Force 
issued its recommendations. 

The APA Task Force did not recom­
mend that statistical significance tests 
should be banned from journals. But the 
Task Force did recommend a number of 
reforms of contemporary analytic prac-

The Research News and Comment section 
publishes commentary and analyses on 
trends, policies, utilization, and contro­
versies in educational research. Like the 
articles and reviews in the Features and 
Book Review sections of ER, this material 
does not necessarily reflect the views of 
AERA nor is it endorsed by the organization. 

tices. Three of these recommendations are 
particularly relevant to the present discus­
sion and have also influenced the recently 
released fifth edition of the APA Publica­
tion Manual (2001). 

Three Recommendations 
Report Effect Sizes 
An effect size characterizes the degree to 
which sample results diverge from the null 
hypothesis (cf. Cohen, 1988, 1994). For 
example, if a researcher hypothesizes that 
the SDs of three populations are equal, 
and the sample SDs are all the same (re­
gardless of what they are), then the effect 
size is zero. As the sample results increas­
ingly diverge from whatever is specified by 
the null hypothesis, the effect size will in­
creasingly diverge from zero. 

The APA Task Force strongly urged au­
thors to report effect sizes (e.g., Cohen’s d, 
Glass’ delta, η2, or adjusted R2). The Task 
Force did not recommend the use of any 
one effect size from among the several 
dozens of available choices (Elmore & 
Rotou, 2001; Kirk, 1996; Synder & Law-
son, 1993; Thompson, 2002). But the 
Task Force emphasized, “Always provide 
some effect-size estimate when reporting a 
p value” (Wilkinson & APA Task Force 
on Statistical Inference, 1999, p. 599, em­
phasis added), and noted “reporting and 
interpreting effect sizes in the context of 
previously reported effects is essential to 
good research” (p. 599, emphasis added). 

The 1994 edition of the APA Publica­
tion Manual “encouraged” (p. 18) authors 
to report effect sizes. However, there are 
now 11 empirical studies (Vacha-Haase, 
Nilsson, Reetz, Lance, & Thompson, 
2000) of 1 or 2 volumes of 23 different 
journals demonstrating that this encour­
agement was not effective, perhaps because 
only encouraging effect size reporting 

presents a self-canceling mixed-message. 
To present an “encouragement” in the 
context of strict absolute standards re­
garding the esoterics of author note 
placement, pagination, and margins is to 
send the message, “these myriad require­
ments count, this encouragement doesn’t.” 
(Thompson, 1999, p. 162) 

Thus, editorial policies at 19 journals 
now formally require effect size reporting 
(cf. McLean & Kaufman, 2000; Murphy, 
1997; Snyder, 2000), including two jour­
nals circulated to more than 50,000 per­
sons (i.e., the flagship journals of the 
American Counseling Association and the 
Council for Exceptional Children). Addi­
tional journals have plans to announce 
similar requirements this year. Further­
more, in response to Task Force recom­
mendations, the 2001 APA Publication 
Manual now notes that 

For the reader to fully understand the im­
portance of your findings, it is almost al­
ways necessary to include some index of 
effect size or strength of relationship in 
your Results section. . . . The general 
principle to be followed . . . is to provide 
the reader not only with information 
about statistical significance but also with 
enough information to assess the magni­
tude of the observed effect or relationship. 
(pp. 25–26, emphasis added) 

Report Confidence Intervals 
Second, the Task Force (1999) empha­
sized that confidence intervals (CIs) are 
very useful, and again emphasized the im­
portance of interpreting results in a given 
study by explicit comparisons with related 
results in prior studies (p. 599). Regarding 
the use of CIs, the 2001 APA Publication 
Manual suggests that CIs represent “in 
general, the best reporting strategy. The 
use of confidence intervals is therefore 
strongly recommended” (p. 22). 
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Use Graphics 
Third, the Task Force recommended the 
use of graphics to enhance the interpreta­
tion and communication of results. This 
emphasis complements CI reporting, be­
cause CIs are readily amenable to graphi­
cal presentation. 

Purpose of This Article 
The recommended interpretation of effect 
sizes and CIs leads quite naturally to a sug­
gestion to report CIs for effect sizes, even 
though the Task Force and the 2001 Pub­
lication Manual did not directly address 
this third practice. The purpose of this ar­
ticle is to illustrate these applications by 
portraying what a future quantitative sci­
ence employing these tools might look 
like, and indeed how much better and 
more exciting such a science might be. 

Confidence Interval Definitions 
A brief discussion of the definition of CIs 
might first be helpful. Some misconceptions 
regarding CIs should be expected, because 

although intervals have long been recom­
mended for researchers (cf. Chandler, 
1957), empirical studies of reporting prac­
tices show that CIs have been reported in­
frequently to date (Finch, Cumming, & 
Thomason, 2001; Kieffer, Reese, & 
Thompson, 2001). It is conceivable that 
some researchers may not fully understand 
statistical methods that they (a) rarely read 
in the literature and (b) infrequently use in 
their own work. 

Some textbooks define a CI as 

. . . a range of numbers believed to in­
clude an unknown population parameter. 
Associated with the interval is a measure 
of the confidence we have that the inter­
val does indeed contain the parameter of 
interest. (Aczel, 1995, p. 205) 

But a better definition describes a given 
CI as one interval from among an infinite 
or at least large sample of CIs for a given 
parameter in which 1–α% of the intervals 
would capture the population parameter 
(cf. Moore & McCabe, 1993, p. 433; 

Tietjen, 1986, p. 35). As Hinkle, Wiersma, 
and Jurs (1998) explained using the exam­
ple of a CI about an estimated mean, 

Theoretically, suppose we compute the 
sample means of all possible samples of size 
20 and constructed the 95-percent confi­
dence intervals for the population mean 
using all of these samples means. Then, 95-
percent of these intervals would contain μ 
and 5 percent would not. (p. 222) 

In short, both the parameter estimate and 
the endpoints for a single CI are influ­
enced by sampling error, and so change 
from sample to sample. 

Figure 11 illustrates these various dy­
namics. The figure presents a series of 20 
random samples each of n = 12 cases from 
a population in which the mean is 50.0 and 
the SD is 10.0. In each of the 20 samples, 
the mean and its 95% confidence interval 
are both estimated. Several conclusions are 
readily drawn from Figure 1: (a) because 
of the sampling error variance, the esti­
mated parameter (e.g., mean) varies some-

Note. The top portion of this figure presents the population of scores with a mean of 50.0 and a standard deviation 
of 10.0. The bottom portion of the figure presents the sample means (shaded circles) and the 95% CIs about each 
mean (bars) for 20 independent samples from the population. 

FIGURE 1. Population and a series of 20 estimated 95% intervals for sample (n = 12) means. 
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what from sample to sample; and (b) the 
width of the interval (i.e., its precision) 
also varies somewhat from sample to sam­
ple (e.g., the 18th interval is considerably 
narrower than the 19th interval). But most 
relevant to the present discussion is the 
fact that one of the displayed intervals (12) 
did not capture the population mean. This 
reflects the expectation that 1 in 20 of a 
large number of 95% intervals, on the av­
erage, will not capture the population pa­
rameter (e.g., |J,, p, a ) . Cumming and 
Finch (2001) and others provide more 
elaboration of this point. 

Note that a given interval either does or 
does not capture the parameter. This is a 
binary outcome with only these two dis­
crete possibilities, just as one can only be 
pregnant or not pregnant, but cannot be 
95% pregnant. Strictly speaking, it is not 
best practice to describe a single interval 
as 95% likely to capture a population pa­
rameter, because any 95% confidence state­
ment applies, not to a single CI from a 
single sample, but to a large or infinite set 
of intervals constructed from a large or in­
finite number of samples. The confidence 
that one may vest in a large or infinite set 
of intervals capturing a population param­
eter does not guarantee that a single inter­
val in a study actually did capture the pop­
ulation parameter being estimated. 

It is also important to emphasize that, as 
for all statistical procedures, intervals for ef­
fect sizes will be incorrect if the assumptions 
for the computations (e.g., independence of 
observations, normality) are violated. Thus, 
these estimates are not a panacea applicable 
when assumptions are violated. 

Intervals for Effect Sizes Versus 
Other Estimates 

Confidence intervals about effect sizes are 
not the same as CIs for other parameter es­
timates, such as means. Nor are the effect 
size intervals computed in the same man­
ner as CIs for statistics such as means or 
SDs. Confidence intervals for sample sta­
tistics, such as means and SDs, can be 
computed using formulas, and these com­
putations have been incorporated in com­
monly used statistical programs for several 
decades. 

Constructing CIs about effect sizes, on 
the other hand, raises two somewhat daunt­
ing technical difficulties. First, noncentralt 
and/•'distributions (cf. Pearson & Hartley, 
1972), with which many researchers are un­

familiar, must be used to construct these ef­
fect size intervals (Fleishman, 1980; Steiger 
& Fouladi, 1997); these are not the central 
t and F distributions taught in most con­
temporary doctoral programs or statistics 
textbooks. Second, a generic formula can­
not be employed to compute CIs for effect 
sizes, and instead computerized software 
estimation must be used to address each 
different research situation and result. For­
tunately, commonly available software (e.g., 
SPSS) may be programmed to provide 
these so-called “iterative” estimates (Bird, 
2002; Smithson, 2001). Iterative estima­
tion is also necessary in various other sta­
tistical procedures with which many re­
searchers may be more familiar, such as 
the estimation of communalities or of ro­
tations in factor analysis. 

A small heuristic data set may be used to 
illustrate the difference between comput­
ing an interval using a formula and esti­
mating an interval using iteration (i.e., se­
quential estimation conducted until a 
statistical accuracy criterion is met). The 
“nil” null that |J, = .0 might be tested. As­
sume a sample data set with seven scores 
ranging in increments of .05 from .2 to .5. 
For these sample data M= .35 (SD= .108). 
Unlike the interval for an effect size, a for­
mula can be used to compute the 95% CI 
about the mean, and the CI for the mean 
would be computed to be [.25 to .45]: 

CI95% = M+ t(a= .05,jf=„-1) [SD/ v«] 

= .35 ± 2.447 [.108 / v7] 
= .35 ± .10. 

This interval for the mean and the sample 
data is presented graphically in the upper 
portion of Figure 2. 

The d (cf. Cohen, 1988; Roberts & 
Henson, 2002) for these data equals 3.24 
(.35 / .108). The confidence interval about 
this d can be computed using software 
such as that provided by Smithson (2001) 
or Cumming and Finch (2001). The re­
sult is presented in the lower portion of 
Figure 2. This interval is computed to be 
[1.29 to 5.15]. 

Figure 2 makes several important heuris­
tic points. First, Figure 2 presents the CIs 
for both the mean and the related d effect 
size in a single figure, to emphasize that 
the scales or metrics for these two intervals 
are different. The scale of the CI for the 
mean, presented at the top of the figure, 
is in the metric of the original measure­

ments. The scale for the standardized ef­
fect size (d) presented at the bottom of the 
figure, on the other hand, differs, because 
the scale of the original observations has 
been removed from this estimate by divi­
sion by that metric. We use division by an 
SD to create standardized or metric-free ef­
fect sizes when the original measurements 
have a scale with no intrinsic meaning. We 
also use metric-free effect sizes when within 
a given literature we wish to compare ef­
fect sizes as “apples and apples” across 
different studies that used measures of dif­
ferent lengths or different scoring and thus 
involved SDs differing as a function of 
study design. 

Second, Figure 2 also illustrates the 
two noncentral t distributions that must 
be employed in deriving the effect size in­
terval. Note that these two noncentral 
distributions, presented at the bottom of 
the figure, at the boundaries of the CI for 
the effect size, unlike central t, are not 
symmetrical and are not centered at zero. 
Noncentral and central distributions dif­
fer more as (a) sample size is smaller or 
(b) effect size is larger. 

A brief comment on the iterative use of 
noncentral distributions in building CIs 
about dis warranted, although this process 
is extremely technical and considerably 
more detail is available elsewhere (e.g., 
Cumming & Finch, 2001; Smithson, 
2001). Because a formula cannot be used 
for this process, one tail of the effect size CI 
is iteratively estimated at a time. For exam­
ple, as regards the left tail, and presuming 
a 95% interval is being constructed, a func­
tion of the noncentral distribution called 
the noncentrality parameter is estimated or 
guessed, and the percentage of the area 
under this curve that is immediately to the 
right of the d value or a function of this 
value is computed. The noncentrality pa­
rameter is iteratively tweaked until a /2 
(e.g., .05/2 = .025) of the area in the non-
central distribution is to the right of the d 
value or a function of this value. This area 
is shaded in Figure 2. Then the mean of 
this noncentral distribution is found, and 
that value defines the left boundary of the 
CI for d. 

The process is then repeated to itera­
tively estimate the right CI boundary. Of 
course, the two boundaries can be found 
either left first or right first, because the 
boundaries are estimated independently 
using two different noncentral distribu-
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Note. The top portion of the figure presents the scale for the observed raw score data, the mean (M = .35) and the 95% confidence interval 
(CI) for the mean, and the seven scores in the data set. The bottom portion of the figure presents the effect size, Cohen’s d (i.e., d = 3.24), 
and the CI for this estimate. 

FIGURE 2. Ninety-five percent confidence intervals about M versus d. 

tions with different noncentrality parame­
ters. As in factor analysis and other proce­
dures where iteration is routinely used, the 
process of iteratively estimating CIs for ef­
fect sizes also can be automated within 
computer software, so that the iteration 
(although computationally demanding) is 
painless. 

It is important to emphasize, as the fig­
ure also illustrates, that CIs about param­
eters such as means and effect sizes are 
not the same entities, even though the 
data and sample size are the same for both 
computations. This is illustrated in the 
fact that the widths or precisions of the 
intervals clearly differ for this example 
(i.e., the width of the interval for the 
mean is .2 [.45 - .25], but the width of 
the interval for the d effect size is 3.86 
[5.15 - 1.29]). 

Confidence Intervals Facilitate 
Meta-Analytic Thinking 

As noted at the outset, the controversies 
regarding statistical significance testing 
have been extremely heated. For example, 

Schmidt and Hunter (1997) argued that 
“Statistical significance testing retards the 
growth of scientific knowledge; it never 
makes a positive contribution” (p. 37). On 
the other hand, Abelson (1997) argued 
equally forcefully that if these tests did not 
exist, they would have to be invented. But 
there is one definitive area of agreement 
across the full spectrum of opinions re­
garding statistical significance testing: even 
scholars with diverse views of statistical 
significance testing increasingly emphasize 
the critical importance of replication in so­
cial science research (cf. Thompson, 1996; 
Robinson & Levin, 1997). This emphasis 
can be described as thinking meta-analyt-
ically (Cumming & Finch, 2001). 

I define thinking meta-analytically as 
both (a) the prospective formulation of 
study expectations and design by explicitly 
invoking prior effect sizes and (b) the ret­
rospective interpretation of new results, 
once they are in hand, via explicit, direct 
comparison with the prior effect sizes in 
the related literature. Confidence intervals 

about effect sizes are important because 
they facilitate exactly this sort of meta-
analytic thinking. 

The hypothetical results presented in 
Table 1 may be used to illustrate this 
process. The hypothetical example involved 
studies investigating whether high school 
students on medication to treat hyper-
activity have mean verbal SAT scores that 
differ in either direction from a population 
mean of 500. The researcher found all rel­
evant research and either computed effect 
sizes or located author reports of effect 
sizes. Of course, one day hopefully all au­
thors will routinely report effect sizes to fa­
cilitate such literature summaries. In the 
example 10 studies had d values ranging 
from -.4 to +1.3, and sample sizes ranging 
from 4 to 53. The 95% intervals for these 
10 effect sizes are presented in Figure 3. 

The kind of meta-analytic thinking rec­
ommended here and by the APA Task 
Force would encourage the thoughtful in­
tegration of all prior related research when 
formulating expectations and designing a 
study. This is illustrated in Table 1 and 
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Table 1 . Practical and Statistical Significance Statistics for 10 Previous Studies and One New Study 

Results 

Study d n t calc p calc Decision CI for d 

Prior Literature 
1 1.30 4 2.600 0.080 NS -0.13 to 2.64 
2 0.20 53 1.456 0.151 NS -0.07 to 0.47 
3 -0.40 34 -2.332 0.026 * -0.75 to -0.05 
4 0.50 17 2.062 0.056 NS -0.01 to 1.00 
5 0.70 9 2.100 0.069 NS -0.05 to 1.42 
6 0.65 11 2.156 0.056 NS -0.02 to 1.29 
7 0.80 7 2.117 0.079 NS -0.09 to 1.64 
8 0.60 12 2.078 0.062 NS -0.03 to 1.21 
9 0.40 25 2.000 0.057 NS -0.01 to 0.80 

10 0.30 35 1.775 0.085 NS -0.04 to 0.64 

Past research, pooled 
0.278 207 4.000 0.00009 *** 0.14 to 0.42 

Current study 
11 0.45 19 1.962 0.065 NS -0.03 to 0.92 

Past and current, pooled 
0.292 226 4.390 0.00002 *** 0.16 to 0.42 

Note. Pooled results are presented in italics. For the one-group case t= d (square root of n). Exact p calculated values can be found in Excel by using 
the function “TDIST( t, n-1, 2)”. The weighted average effect size can be computed, for example for the 10 prior studies, as [(1.30 x 4) + (0.20 x 53) 
+ ...(0.30 X 35)] / [4 + 53 + ...35] = [5.2 + 10.6 + ...10.5] / 207 = 57.45 / 207 = .278. calc = calculated. 

* p < . 0 5 * * * p < . 0 0 1 

Figure 3 by the synthesis of the prior effect 
sizes into a weighted average with d = .278 
(n = 207). 

It is important to emphasize that this 
empirical integration of effect sizes across 
studies presumes that the prior studies 
have all been screened to insure that each 
study is of acceptable quality. As is true 
throughout the process of inquiry, re­
searchers also must invoke thoughtful 
judgment when integrating prior results 
(e.g., rather than “vote counting” how 
many prior studies achieved statistical sig­
nificance or rotely integrating effect sizes 
even from poorly executed studies). For 
example, researchers might give more 
weight to studies deemed to have been 
better in quality (e.g., involved better mea­
surement or had better checks for fidelity 
to an intervention protocol). 

The researcher must also thoughtfully 
judge whether the studies being integrated 
are in some way biased. For example, re­
ported effects might be unrepresentative if 
the “file drawer” problem (Rosenthal, 
1979) meant that only statistically signifi­
cant results were reported. Or published 
effect sizes might be positively biased if 
only studies with large effect sizes were ad­

mitted into the literature. Some effect sizes 
also may be statistically biased as a func­
tion of study design, although statistical 
corrections for these biases can sometimes 
be invoked to minimize these distortions 
(Kirk, 1996; Thompson, 2002). We are 
still learning which of the several dozen ef­
fect sizes are statistically biased and require 
correction, and which corrections are most 
appropriate (Roberts & Henson, 2002). 

In my example the researcher then con­
ducted a new study with n = 19 and found 
that d = +.45. The 95% CI for this effect 
size is reported in Figure 3. As a last step, 
as part of result interpretation, the re­
searcher integrates this finding into the 
prior literature by computing a new, 
pooled CI for effect size presented at the 
very bottom of the figure. 

Discussion 

Some researchers erroneously equate CIs 
and statistical significance tests (Hagen, 
1997; Knapp & Sawilowsky, 2001). Some 
confusion may arise because if a CI does 
not subsume zero, then a classical statisti­
cal significance test of the same data would 
always be statistically significant. But the 
most informative use of intervals does not 

evaluate whether a given interval sub­
sumes zero, but instead compares intervals 
across studies. The distinction between 
significance testing and interval interpre­
tation becomes clear when we realize that 
statistical tests may not be conducted ab­
sent a null hypothesis, but CIs can be con­
structed without a hypothesis. Confidence 
intervals can also be interpreted without 
hypotheses by couching interpretations in 
terms of the CIs from prior, related stud­
ies. The appeal of intervals is that across 
studies using intervals will ultimately lead 
us to the correct population value, even if 
our initial expectations are wildly wrong 
(Schmidt, 1996). 

How Big is Big Enough? 

One issue that confronts any researcher 
using either effect sizes or CIs about effect 
sizes is the question of what is a note­
worthy effect. The field has not reached a 
definitive view on this matter. In his vari­
ous books on power analysis (cf. Cohen, 
1988), although he had reservations about 
doing so, Cohen proposed some tentative 
benchmarks for what might be deemed 
small, medium, and large effects as regards 
d. Because many of the several dozen effect 
sizes (e.g., T|2, CO2) can be converted in d, 
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Note. The top 10 effect size intervals are for the studies from the prior literature, with the d’s represented as 
gray circles within the intervals. The pooled weighted average d (i.e., .278) is presented next, as a darker 
oval. The result in the present study (d = .45) is then presented as a gray square. Finally, the weighted aver­
age d across all 11 studies is presented last as a dark square. 

FIGURE 3. Integration of confidence intervals across studies. 

or vice versa, his tentative benchmarks 
potentially have wide applicability (Kirk, 
1996; Thompson, 2002). 

Cohen’s hesitancy in presenting criteria 
for effect noteworthiness stemmed from 
the important admonition that the note-
worthiness of an effect turns largely on 
what one is studying. Small but replicable 
effects for very important outcomes may 
be very noteworthy; extremely large effects 
may be needed for results to be note­
worthy for relatively unimportant out­
comes. For example, Gage (1978) pointed 
out that even though the relationship be­
tween cigarette smoking and lung cancer 
is relatively small (i.e., η2 = 1% to 2%), 

Sometimes even very weak relationships 
can be important . . . [O]n the basis of such 
correlations, important public health pol­
icy has been made and millions of people 
have changed strong habits. (p. 21) 

Of course, this has also occurred because 
the effect involving a very cherished out-

come variable has been replicated numer­
ous times. 

Some people invoke Cohen’s bench­
marks for effects with more rigidity than 
he may have liked. As Thompson (2001) 
recently noted, “if people interpreted effect 
sizes [using fixed benchmarks] with the 
same rigidity that a = .05 has been used in 
statistical testing, we would merely be being 
stupid in another metric” (pp. 82–83). 

Researchers in the past should not have 
employed p < .05 as an atavistic escape 
from explicitly arguing why their results 
were noteworthy (Thompson, 1993). By 
the same token, the existence of effect size 
benchmarks should not justify abrogating 
the responsibility for arguing effect import 
in the specific context of a given study. It 
is not necessary to have universal bench­
marks regarding what effect sizes may be 
deemed noteworthy. The reader with a 
value system widely different than that of 
an author might reasonably disagree with 
the author about whether the effect size is 

noteworthy and then simply ignore the 
study. But once reporting effect sizes be­
comes normatively standard practice, at 
least all authors and readers will then be in 
a position to evaluate how replicable or 
stable are the effects within a given area of 
inquiry. 

Three Recommendations for Practice 
Several recommendations for practice are 
suggested here: 

1. Report and explicitly interpret effect sizes 
in the context of effect sizes from prior re­
lated studies and not by invoking rigid 
benchmarks. The potential benefits of 
reporting and interpreting an effect size 
(e.g., Cohen’s d, Glass’ delta, η2, or ad­
justed R2) arise not from interpreting 
effects against benchmarks, but rather 
by comparing effect sizes directly with 
the effects reported in related prior 
studies (Wilkinson & APA Task Force, 
1999, p. 599). The overly rigid use of 
fixed benchmarks for small, medium, 
and large effects fails to consider the 
possibility that small, replicable effects 
involving important outcomes can be 
noteworthy, or that large effects in­
volving trivial outcomes may not be 
particularly noteworthy. 

2. Report and interpret CIs, including in­
tervals for effect sizes, in the context of re­
lated intervals from prior research, and 
not only by evaluating whether they sub­
sume zero. The potential benefits of 
computing CIs about either parameter 
estimates (e.g., means, SDs) or effect 
sizes (e.g., Cohen’s d) do not arise from 
interpreting intervals by evaluating 
whether they subsume zero; that is 
merely null hypothesis significance 
testing in another guise (cf. Thomp­
son, 1998). Rather, these benefits ac­
crue by comparing intervals across re­
lated studies, thereby converging on 
population parameters. 

3. When literature reports more than a 
handful of CIs, consider summarizing all 
the intervals in a graphic form. One po­
tential benefit of reporting CIs is that 
intervals from prior and current studies 
can readily be presented in picture form 
similar to that used in Figure 3. Note 
that Figure 3 contains the information 
presented in Table 1, but the graphic 
presentation may be more digestible. 
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Various scholars have presented a 
thoughtful case for more frequent use of 
graphics in research, including Loftus 
(1993), Tufte (2001), and Wainer (2000). 
Put simply, in some cases a picture is worth 
a thousand words (or several tables). First, 
from Figure 3 at a glance one can deter­
mine that 10 of the 11 studies had positive 
effects, and that the weighted averages of 
the 10 prior or of all 11 studies (past plus 
present) were positive. From such a pic­
ture one could easily glean an impression 
of a large literature involving even 50 or 60 
(or more) effect sizes. Second, the widths 
of the intervals also facilitate an impression 
regarding the precision of effect estimation 
across the studies within a literature. 

An important way to think about a CI 
is as a representation of all reasonably 
plausible parameter estimates based on re­
sults in either a single study or in a litera­
ture. For example, in Study 1 d= 1.3; but 
based on the study’s CI, dmight also be es­
timated as —.13, .0, 1.0, 2.6, or any other 
number between —.13 and 2.64. A graphic 
showing wide intervals across all or most 
studies indicates that too many studies are 
being poorly conducted because precision 
is so limited. It is conceivable that re­
searchers may not recognize insufficient 
precision in literature until they see the big 
picture (perhaps literally) as regards such 
interval widths across studies. 

Report Effect Sizes Even 
for Nonsignificant Results 

Some have argued that effect sizes should 
only be reported when results are statisti­
cally significant (Robinson & Levin, 1997) 
to minimize the likelihood that researchers 
will overinterpret results that are actually 
nonreplicable. This danger is minimized if 
the interpretative framework never focuses 
on the result in a single study in isolation, 
but rather always focuses on the result in a 
given study in direct comparison with effect 
sizes in related prior studies. The Figure 3 
example makes it clear why presenting ef­
fect sizes even for statistically nonsignifi­
cant results is so important. 

In the Figure 3 example only 1 of the 
11 studies had statistically significant re­
sults (a = .05): d= —.40, p = .026. This 
also happened to be the only 1 of the 11 
studies in which the sample mean was less 
than the population mean verbal SAT 
score of 500. Note that if the file drawer 

problem (Rosenthal, 1979) had governed, 
researchers might wrongly conclude that 
students on hyperactivity medication tend 
to score less than 500 on the verbal SAT. 
Only this result would have been pub­
lished, and everyone would have posited a 
pattern in the wrong direction. 

Here the aggregation of effects across 
the previous studies and the current study 
(i.e., the pooled result presented at the 
bottom of Table 1 and graphically in Fig­
ure 3) suggests an overall pattern of positive 
effects, and the precision of the estimated 
effect size interval is fairly narrow, as re­
flected in the narrow width of the aggre­
gated CI. The result also illustrates why 
Rosnow and Rosenthal (1989) wrote that 
“surely, God loves the .06 [level of statisti­
cal significance] nearly as much as the .05” 
(p. 1277); the pooling of studies each with 
p = .06 can indeed lead to the discovery of 
a replicable result with important practical 
consequences. 

Summary 

A brighter day is dawning in which re­
searchers will ask not only if a sample result 
is likely but also if an effect is practically 
noteworthy or replicable (Kirk, 1996, 
2001). The incremental progress toward 
creating a better science would be facili­
tated by reporting and interpreting effect 
sizes, CIs for relevant sample results (e.g., 
means), and CIs about effect sizes. 

Short and accessible treatments of ef­
fect size choices have been provided by 
Kirk (in press), Olejnik and Algina 
(2000), Snyder and Lawson (1993), and 
Thompson (2002). Software for comput­
ing CIs for various effect sizes has been 
reported by Bird (2002), Cumming and 
Finch (2001), Smithson (2001), and 
Steiger and Fouladi (1992). Some of these 
programs can analyze raw data while oth­
ers use summary statistics; some programs 
run under Excel (e.g., Cumming & Finch, 
2001) or SPSS (e.g., Smithson, 2001) or 
stand-alone (e.g., Steiger & Fouladi, 1992). 
And in many cases these applications can 
be downloaded off the Web for free or for 
only a nominal charge. 

Thinking meta-analytically itself, even 
absent other needed improvements in 
contemporary practices, would result in an 
improved science of discovery. If educa­
tional research can make a difference in 
the lives of children and other stakehold-

ers, as we often presume when conducting 
inquiry, we ought to report and interpret 
our results in ways that do everything pos­
sible to optimize the potentials for insight 
and impact. 

NOTES 

Bruce Thompson is Professor and Distin­
guished Research Fellow, Department of Edu­
cational Psychology, Texas A & M University, 
College Station, TX 77843-4225; the author 
receives e-mail and provides related reprints at 
http://www.coe.tamu.edu/~bthompson. His 
specializations include statistics, measurement, 
and program evaluation. 

1 Figure 1 and the other figures reported here 
were constructed using the Exploratory Software 
for Confidence Intervals (ESCI) developed by 
Geoff Cumming at La Trobe University in Aus­
tralia. This software runs under Excel, is a won­
derful tool for both learning about and teaching 
important effect size and CI concepts, and can 
be downloaded from http://www.latrobe.edu. 
au/psy/esci. 
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