Key Formulas

Rate	Rate = Number in subset Total number × Constant(e.g.,1,000)	Confidence interval around a sample mean with large samples	$\overline{X} \pm z_{\alpha}(\sigma_{\overline{X}}) = z_{\alpha}\left(\frac{s}{\sqrt{n-1}}\right)$	
Proportion	Proportion = $\frac{\text{Number in subset of sample}}{\text{Total number in sample}} = \frac{f}{n}$	Confidence interval around a sample mean with small samples	$\overline{X} \pm t_{\alpha}(\sigma_{\overline{X}}) = \overline{X} \pm t_{\alpha}\left(\frac{s_{\chi}}{\sqrt{n}}\right)$	
Percent	Percent = $\frac{f}{n} \times 100$ = Proportion × 100	Confidence interval around a sample proportion with large samples	$\hat{\rho} \pm z_a(s_p) = z_a \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}}$	
Sample Mean	Sample mean = $\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$	To find a <i>z</i> score for hypothesis testing one sample mean	$z_{\rm obt} = \frac{\overline{X} - \mu}{s / \sqrt{n}}$	
Variation ratio	$VR = 1 - \frac{f_{modal}}{n}$	To find a <i>t</i> score for hypothesis testing one sample mean:	ng $t_{obt} = \frac{X - \mu}{\alpha / \sqrt{n}}$	
Range	Highest x, score – Lowest x, score	To find a <i>z</i> score for hypothesis testing for one sample proportion:	esting $z = \frac{\hat{p} - P}{P}$	
Interquartile range	$IQR = xQ_3 - xQ_1$	Computational formula for chi- square statistic (equation 9–3):	$\chi^2 = \sum_{i=1}^k \left(\frac{f_o^2}{f_o} \right) - n$	
Variance of a sample	$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{X})^{2}}{n-1}$	Phi coefficient (equation 9–4):	$\phi = \sqrt{\frac{\chi^2_{\text{obt}}}{n}}$	
Standard deviation of a sample	$S = \sqrt{\frac{\sum\limits_{i=1}^{n} (x_i - \bar{X})^2}{n-1}}$	Contingency coefficient:	$C = \sqrt{\frac{\chi_{obt}^2}{n + \chi_{obt}^2}}$	
Computational formula for sample variance with ungrouped data – Take the Square Root for Standard Deviation	$s^{2} = \frac{\Sigma(x_{i}^{2}) - \frac{(\Sigma x_{i})^{2}}{n}}{n-1}$	Cramer's V:	$V = \sqrt{\frac{x_{obt}^2}{n(k-1)}}$	

(Continued)

The probability of success— the binomial coefficient	$P(r) = \binom{n}{r} p^r q^{n-r}$ $P(r) = \left(\frac{n!}{r!(n-r)!}\right) p^r q^{n-r}$	Computational formula for Lambda:	$\lambda = \frac{(\Sigma f_i) - f_d}{n - f_d}$
The mathematical formula for the normal distribution	$f(x) = \frac{1}{s\sqrt{2p}} e^{\frac{-(x-m)^2}{2s^2}}$	Pooled variance difference between means <i>t</i> test	$t_{\text{obt}} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{n_1 + n_2}{n_1 n_2}}}$
Formula for converting a raw score into a <i>z</i> score	$z = \frac{x - \overline{X}}{s}$	Separate variance difference between means <i>t</i> test :	$t_{\rm obt} = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1 - 1} + \frac{s_2^2}{n_2 - 1}}}$

$$\begin{array}{c} \begin{array}{c} \mbox{Dependent}\\ \mbox{or Matched:}\\ \mbox{samples}\\ \mbox{difference}\\ \mbox{between}\\ \mbox{means I test:} \end{array} & t_{dat} = \frac{\bar{X}_{D}}{S_{D}/\sqrt{n}} \\ \end{array} & \begin{array}{c} \begin{array}{c} \mbox{Other formulas}\\ \mbox{natysis of}\\ \mbox{Analysis of}\\ \mbox{A$$

Multivariate ordinary least- squares (OLS) regression equation:	$y = a + b_1 x_1 + b_2 x_2 + \cdots + b_k x_k + \varepsilon$	Partial correlation coefficients:	$r_{yx_{1}.x_{2}} = \frac{r_{yx_{1}} - (r_{yx_{2}})(r_{x_{1}x_{2}})}{\sqrt{1 - r_{yx_{2}}^{2}}\sqrt{1 - r_{x_{1}x_{2}}^{2}}}$ $r_{yx_{2}.x_{1}} = \frac{r_{yx_{1}} - (r_{yx_{1}})(r_{x_{1}x_{2}})}{\sqrt{1 - r_{yx_{1}}^{2}}\sqrt{1 - r_{x_{1}x_{2}}^{2}}}$
Partial slope coefficients:	$b_{1} = \left(\frac{s_{y}}{s_{x_{1}}}\right) \left(\frac{r_{yx_{1}} - (r_{yx_{2}})(r_{x_{1}x_{2}})}{1 - r_{x_{1}x_{2}}^{2}}\right)$ $b_{2} = \left(\frac{s_{y}}{s_{x_{2}}}\right) \left(\frac{r_{yx_{2}} - (r_{yx_{1}})(r_{x_{1}x_{2}})}{1 - r_{x_{1}x_{2}}^{2}}\right)$	Multiple coefficient of determination, <i>R</i> ² :	$R^{2} = r_{yx_{1}}^{2} + (r_{yx_{2}.x_{1}}^{2})(1 - r_{yx_{1}}^{2})$
Total sum of squares (SS _{total}):	$SS_{total} = \sum_{i} \sum_{k} (x_{ik} - \overline{X}_{grand})^2$	Logistic regression model:	$\ln\left(\frac{P}{1-P}\right) = \beta_0 + \beta_1 x_1$
Within-group sum of squares (SS _{within}):	$SS_{\text{within}} = \sum_{i} \sum_{k} (x_{ik} - \overline{X}_{k})^{2}$	Predicted probabilities from logit model:	$\hat{\rho} = \frac{e^{(b_0 + b_1 x_1)}}{1 + e^{(b_0 + b_1 x_1)}}$