Key Formulas

Rate	$\begin{aligned} \text { Rate }= & \frac{\text { Number in subset }}{\text { Total number }} \\ & \times \text { Constant(e.g.,1,000) } \end{aligned}$	Confidence interval around a sample mean with large samples	$\bar{X} \pm z_{\alpha}\left(\sigma_{\bar{X}}\right)=z_{\alpha}\left(\frac{s}{\sqrt{n-1}}\right)$
Proportion	$\text { Proportion }=\frac{\text { Number in subset of sample }}{\text { Total number in sample }}=\frac{f}{n}$	Confidence interval around a sample mean with small samples	$\bar{X} \pm t_{\alpha}\left(\sigma_{\bar{X}}\right)=\bar{X} \pm t_{\alpha}\left(\frac{s_{X}}{\sqrt{n}}\right)$
Percent	Percent $=\frac{f}{n} \times 100=$ Proportion $\times 100$	Confidence interval around a sample proportion with large samples	$\hat{p} \pm z_{a}\left(s_{p}\right)=z_{a} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Sample Mean	Sample mean $=\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}$	To find a z score for hypothesis testing one sample mean	$z_{\mathrm{obt}}=\frac{\bar{x}-\mu}{s / \sqrt{n}}$
Variation ratio	$\mathrm{VR}=1-\frac{f_{\text {modal }}}{n}$	To find a t score for hypothesis testing one sample mean:	$t_{\mathrm{obt}}=\frac{\bar{x}-\mu}{s / \sqrt{n}}$
Range	Highest x_{i} score - Lowest x_{i} score	To find a z score for hypothesis testing for one sample proportion:	$z=\frac{\hat{p}-P}{\sigma_{\hat{p}}}$
Interquartile range	$\mathrm{IQR}=x \mathrm{Q}_{3}-x \mathrm{Q}_{1}$	Computational formula for chisquare statistic (equation 9-3):	$\chi^{2}=\sum_{i=1}^{k}\left(\frac{f_{0}^{2}}{f_{e}}\right)-n$
Variance of a sample	$s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}$	Phi coefficient (equation 9-4):	$\phi=\sqrt{\frac{\chi_{\mathrm{obt}}^{2}}{n}}$
Standard deviation of a sample	$s=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}}$	Contingency coefficient:	$C=\sqrt{\frac{\chi_{o b t}^{2}}{n+\chi_{o b t}^{2}}}$
Computational formula for sample variance with ungrouped data - Take the Square Root for Standard Deviation	$s^{2}=\frac{\Sigma\left(x_{i}^{2}\right)-\frac{\left(\Sigma x_{i}\right)^{2}}{n}}{n-1}$	Cramer's V:	$V=\sqrt{\frac{x_{o b t}^{2}}{n(k-1)}}$

(Continued)
(Continued)

The probability of success- the binomial coefficient	$P(r)=\binom{n}{r} p^{r} q^{n-r}$	Computational formula for Lambda:	$\lambda=\frac{\left(\Sigma f_{i}\right)-f_{d}}{n-f_{d}}$
The mathematical formula for the normal distribution	$f(x)=\frac{1}{s \sqrt{2 p}} e^{\frac{-(x-m)^{2}}{2 s^{2}}}$	$n!(n-r)!p^{r} q^{n-r}$	Pooled variance difference between means t test
Formula for converting a raw score into a z score	$z=\frac{x-\bar{X}}{s}$	$t_{\text {obt }}=\frac{\bar{X}_{1}-\bar{X}_{2}}{\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}}$	

Dependent or Matchedsamples difference between means t test:	$t_{\text {obt }}=\frac{\bar{X}_{D}}{s_{D} / \sqrt{n}}$	Other formulas necessary for Analysis of Variance and Related Statistics:	$S S_{\text {between }}=\sum_{i} \sum_{k}\left(\bar{X}_{k}-\bar{X}_{\text {grand }}\right)^{2}$ Total variance: $\frac{S S_{\text {total }}}{d f_{\text {total }}}=\frac{\sum_{i} \sum_{k}\left(x_{i k}-\bar{X}_{\text {grand }}\right)^{2}}{n-1}$
Difference between proportions z test:	$z_{\mathrm{obt}}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\hat{p} \hat{q}} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}}$		Within-group variance $: \frac{S S_{\text {within }}}{d f_{\text {within }}}=\frac{\sum_{i} \sum_{k}\left(x_{i k}-\bar{X}_{k}\right)^{2}}{n-k}$
Computational formula for Pearson's correlation coefficient:	$r=\frac{n \Sigma x y-(\Sigma x)(\Sigma y)}{\sqrt{\left[n \Sigma x^{2}-(\Sigma x)^{2}\right]\left[n \Sigma y^{2}-(\Sigma y)^{2}\right]}}$		$\begin{aligned} & \text { Between-groups variance }: \frac{S S_{\text {between }}}{d f_{\text {between }}}=\frac{\sum_{i} \sum_{k}\left(x_{k}-\bar{X}_{\text {grand }}\right)^{2}}{k-1} \\ & F: \frac{S S_{\text {between }} / d f_{\text {between }}}{C C}=\frac{\text { Variance between groups }}{} \end{aligned}$
Ordinary least-squares regression line for the population:	$y=\alpha+\beta x$		Tukey's Honest Significant Difference Test: Critical difference score:
Computational formula for the slope coefficient:	$b=\frac{n \Sigma x y-(\Sigma x)(\Sigma y)}{n \Sigma x^{2}-(\Sigma x)^{2}}$		$\mathrm{CD}=q \sqrt{\frac{\text { Within-group variance }}{n_{k}}}$
			Eta squared or the correlation ratio:
			$\eta^{2}=\frac{S S_{\text {between }}}{S S_{\text {total }}}$
t statistic for testing null hypothesis about b and r :	$t=r \sqrt{\frac{n-2}{1-r^{2}}}$	Beta weights:	$\begin{aligned} & b_{x_{1}}^{*}=b_{x_{1}}\left(\frac{s_{x_{1}}}{s_{y}}\right) \\ & b^{*}{ }_{x_{2}}=b_{x_{2}}\left(\frac{s_{x_{2}}}{s_{y}}\right) \end{aligned}$

Multivariate ordinary leastsquares (OLS) regression equation:	$y=a+b_{1} x_{1}+b_{2} x_{2}+\cdots b_{k} x_{k}+\varepsilon$	Partial correlation coefficients:	$\begin{aligned} & r_{y x_{1} \cdot x_{2}}=\frac{r_{y x_{1}}-\left(r_{y x_{2}}\right)\left(r_{x_{1} x_{2}}\right)}{\sqrt{1-r_{y x_{2}}^{2}} \sqrt{1-r_{x_{1} x_{2}}^{2}}} \\ & r_{y x_{2} \cdot x_{1}}=\frac{r_{y x_{1}-\left(r_{x_{1} 1}\right)\left(r_{x_{1} x_{2}}\right)}^{\sqrt{1-r_{y x_{1}}^{2}} \sqrt{1-r_{x_{1} x_{2}}^{2}}}}{} \end{aligned}$
Partial slope coefficients:	$\begin{aligned} & b_{1}=\left(\frac{s_{y}}{s_{x_{1}}}\right)\left(\frac{r_{y x_{1}}-\left(r_{y x_{2}}\right)\left(r_{x_{1} x_{2}}\right)}{1-r_{x_{1} x_{2}}^{2}}\right) \\ & b_{2}=\left(\frac{s_{y}}{s_{x_{2}}}\right)\left(\frac{r_{y x_{2}}-\left(r_{y x_{1}}\right)\left(r_{x_{1} x_{2}}\right)}{1-r_{x_{1} x_{2}}^{2}}\right) \end{aligned}$	Multiple coefficient of determination, R^{2} :	$R^{2}=r_{y x_{1}}^{2}+\left(r_{y x_{2}, x_{1}}^{2}\right)\left(1-r_{y x_{1}}^{2}\right)$
Total sum of squares $\left(\mathrm{SS}_{\text {totala }}\right)$:	$\mathrm{SS}_{\text {total }}=\sum_{i} \sum_{k}\left(x_{i k}-\bar{X}_{\text {grand }}\right)^{2}$	Logistic regression model:	$\ln \left(\frac{P}{1-P}\right)=\beta_{0}+\beta_{1} x_{1}$
Within-group sum of squares $\left(\mathrm{SS}_{\text {within }}\right)$:	$\mathrm{SS}_{\text {within }}=\sum_{i} \sum_{k}\left(x_{i k}-\bar{X}_{k}\right)^{2}$	Predicted probabilities from logit model:	$\hat{p}=\frac{e^{\left(b_{0}+b_{1} x_{1}\right)}}{1+e^{\left(b_{0}+b_{1} x_{1}\right)}}$

